Вклад отечественных ученых в развитие вакцинопрофилактики. История вакцинации: кто создал прививки. Постулаты Коха и туберкулез


Масштабные антипрививочные кампании, к которым присоединяется все больше молодых родителей, массовая антипрививочная истерия в СМИ на фоне изредка раздающихся голосов защитников вакцинации побудили меня к написанию цикла статей о прививках. И первый материал посвящен тому, что же изменилось в мире с появлением вакцин.

Допрививочная эра: дифтерия

Противники вакцинации, громко трубящие о ее «грозных» последствиях, почему-то «забывают упомянуть» о временах, когда в мире бушевали эпидемии страшных, смертельных заболеваний. Я восполню этот пробел и напомню читателям о трагедиях, развернувшихся в те годы.

Дифтерия, о которой сегодня благополучно забыли, - тяжелейшее заболевание, которое осложняется параличом конечностей, мягкого нёба, голосовых связок, дыхательных путей. Человек может умереть в невыносимых муках, будучи не в состоянии вдохнуть даже маленький глоток воздуха. Смертельный исход ждет до 20 % детей и взрослых старше 40 лет и 5–10 % людей среднего возраста. В 1920-х годах в Америке во время эпидемии дифтерии погибало 13–15 тысяч человек в год, большинство из которых дети. В 1943 году в Европе дифтерию перенесли 1 миллион человек, из которых 50 тысяч умерли.

В 1974 году Всемирная организация здравоохранения запустила программу иммунизации от дифтерии, результаты которой проявились моментально. Эпидемии стали редкостью, а их редкие вспышки оказывались ничем иным, как следствием ошибок врачей.

Так, в начале 1990-х годов в России медицинские чиновники решили пересмотреть существующий еще с советских времен список противопоказаний к вакцинации против дифтерии - разумеется, с благими намерениями. Он был значительно расширен, и результаты этих намерений привели… к эпидемии дифтерии в 1994 году. Тогда дифтерией заболели 39 703 человека.

Для сравнения: в спокойный 1990 год было зафиксировано всего 1211 случаев заболевания. Но дифтерия - это не самая жуткая болезнь, которую удалось взять под контроль с помощью вакцин.

Тени стянет трепетом tetanus…

Мучительное заболевание, смертность от которого может достигать 50 %... Заразиться им проще простого: отец певца революции Маяковского уколол палец иглой и умер от жестокого столбняка. Токсины, которые выделяют бактерии Клостридии тетани, - яды, приводящие к тоническим сокращениям жевательных мышц, судорогам мимических мышц, а затем к напряжению мышц спины, конечностей, глотки, живота. Вследствие сильных мышечных спазмов нарушается или полностью прекращаются глотание, дефекация, мочеиспускание, кровообращение и дыхание. Около 40 % больных старше 60 лет погибают в неописуемых страданиях. Молодые пациенты имеют больше шансов на выживание, однако перенесенная болезнь останется одним из самых больших кошмаров в их жизни.

Благодаря массовой иммунизации опасность заболеть столбняком приняла гипотетический характер. Так, на 2012 год в России регистрировалось всего 30–35 случаев столбняка в год, причем 12–14 из них имели летальный исход. Около 70 % заболевших - пожилые люди старше 65 лет, не привитые от столбняка.

Оспа, канувшая в Лету

Еще одно ужасное заболевание, оставшееся в допрививочном прошлом навсегда, - оспа. Эта вирусная инфекция легко передается воздушно-капельным путем, собирая богатый урожай жертв. Мало кто сегодня знает и помнит, что как минимум каждый третий больной оспой погибал. Общий коэффициент смертности детей до года составлял 40–50 %.

Сыпь, покрывающая практически все тело, - это только одна, эстетическая сторона заболевания. Такие же оспины со временем появлялись на слизистой оболочке носа, ротоглотки, гортани, а также дыхательных путей, половых органов, мочеиспускательного канала и конъюнктивы глаза.

Затем эти высыпания превращались в эрозии, а позже возникали признаки поражения головного мозга: нарушение сознания, судороги, бред. Осложнения оспы - воспаление головного мозга, пневмония, сепсис. Пациентам, которые выживали после этого заболевания, на память оставались уродующие многочисленные рубцы.

В XVIII веке оспа была лидирующей причиной смертности в мире. Каждый год 400 тысяч европейцев погибали вследствие эпидемий. И только создание вакцины остановило эту напасть. Начало концу оспенным трагедиям положил английский врач Эдвард Дженнер. Он заметил, что доярки, переболевшие коровьей оспой, не заражаются оспой человеческой. Так, еще в начале XVIII века, появилась первая в мире вакцина против натуральной оспы, в состав которой входил неопасный для человека вирус коровьей оспы.

В Россию вакцинация пришла после смерти от оспы императора Петра II. Первыми вакцинированными стали императрица Екатерина II и будущий император Павел I. Так началась эра вакцинации, которая позволила полностью победить уносящую миллионы жизней болезнь. По данным ВОЗ, с 1978 года оспа считается побежденной - с тех пор не было зарегистрировано ни одного случая заболевания.

Благодаря массовой иммунизации оспу удается держать под тотальным контролем, и это - огромное достижение современной медицины. О котором, конечно же, не упоминают противники прививок. Да, спросит читатель, но как же все-таки работают вакцины в человеческом организме?

Невидимый, но ценный труд

Прививки учат организм правильно реагировать на возбудителя заболевания. Убитые или живые, но инактивированные микробы стимулируют иммунный ответ без развития заболевания. В результате организм вырабатывает антитела к антигенам возбудителя и формирует стойкий иммунитет к ним.

Повсеместная вакцинация, начавшаяся в XX веке, не только уничтожила натуральную оспу. Распространенность кори и свинки снизилась на 99 %, а коклюша - на 81 %. Мы почти забыли о полиомиелите и паротите. Девочки, становясь девушками и женщинами, больше не рискуют заразиться «смешной» краснухой во время беременности и потерять из-за этого долгожданного малыша.

Мы привыкли к стабильности и достижениям современной медицины настолько, что стали их не замечать. И тогда в нашу жизнь ворвались голоса тех, кто с горящими праведным гневом глазами возвещает о… смертельной опасности вакцинации. Преисполненные трагичных интонаций эти голоса призывают защищаться от прививок как от самых зловредных, непредсказуемых своими последствиями веществ. На чём же основывают эти люди свои теории, чем аргументируют они «опасность» вакцинации и насколько эти аргументы соответствуют действительности, я расскажу в следующих статьях.

Марина Поздеева

Фото thinkstockphotos.com

Полезная и интересная информация о прививках. История прививок.

Инфекционные болезни преследовали человека на протяжении всей его истории. Известно множество примеров опустошительных последствий оспы, чумы, холеры, тифа, дизентерии, кори, гриппа. Упадок античного мира связан не столько с войнами, сколько с чудовищными эпидемиями чумы, уничтожившими большую часть населения. В XIV веке чума погубила треть населения Европы. Из-за эпидемии натуральной оспы через 15 лет после нашествия Кортеса от тридцатимиллионной империи инков осталось менее 3 миллионов человек.

В 1918-1920 годах пандемия гриппа (так называемой «испанки») унесла жизни около 40 миллионов человек, а число заболевших перевалило за 500 миллионов. Это почти в пять раз больше, чем потери во время Первой мировой войны, где погибли 8 с половиной миллионов человек, а 17 миллионов были ранены.

Наш организм может приобрести устойчивость к инфекционным заболеваниям — иммунитет — двумя путями. Первый — заболеть и выздороветь. При этом организм выработает защитные факторы (антитела), которые в дальнейшем будут оберегать нас от этой инфекции. Этот путь тяжел и опасен, чреват высоким риском опасных осложнений, вплоть до инвалидности и смерти. Например, бактерия, вызывающая столбняк, выделяет в организме больного самый сильный на планете токсин. Этот яд действует на нервную систему человека, вызывая судороги и остановку дыхания-

Каждый четвертый, заболевший столбняком, умирает.

Второй путь — вакцинация. В этом случае в организм вводятся ослабленные микроорганизмы или их отдельные компоненты, которые стимулируют иммунный защитный ответ. При этом человек приобретает факторы защиты от тех заболеваний, от которых привился, не болея самим заболеванием.

В 1996 году мир отметил 200-летие первой вакцинации, произведенной в 1796 году английским врачом Эдвардом Дженнером. Почти 30 лет Дженнер посвятил наблюдению и изучению такого явления: люди, переболев «коровьей оспой», не заражались натуральной оспой человека. Взяв содержимое из образовавшихся везикул-пузырьков на пальцах доильщиц коров, Дженнер ввел его восьмилетнему мальчику и своему сыну (последний факт малоизвестен даже специалистам). Спустя полтора месяца заразил их натуральной оспой. Дети не заболели. Этим историческим моментом датируется начало вакцинации — прививок с помощью вакцины.

Дальнейшее развитие иммунологии и вакцинопрофилактики связано с именем французского ученого Луи Пастера. Он первым доказал, что болезни, которые теперь называют инфекционными, могут возникать только в результате проникновения в организм микробов из внешней среды. Это гениальное открытие легло в основу принципов асептики и антисептики, Дав новый виток развитию хирургии, акушерства и медицины в целом. Благодаря его исследованиям были не только открыты возбудители инфекционных заболеваний, но и найдены эффективные способы борьбы с ними. Пастер открыл, что введение в организм ослабленных или убитых возбудителей болезней способно защитить от реального заболевания. Им были разработаны и стали успешно применяться вакцины против сибирской язвы, куриной холеры, бешенства. Особенно важно отметить, что бешенство — заболевание со 100%-ным смертельным исходом, и единственным способом сохранить человеку жизнь со времен Пастера была и остается экстренная вакцинация.

Луи Пастером была создана мировая научная школа микробиологов, многие из его учеников впоследствии стали крупнейшими учеными. Им принадлежат 8 Нобелевских премий.

Уместно вспомнить, что второй страной, открывшей пастеровскую станцию, была Россия. Когда стало известно, что вакцинация по методу Пастера спасает от бешенства, один из энтузиастов внес в Одесское общество микробиологов тысячу рублей, чтобы на эти деньги был направлен в Париж врач для изучения опыта Пастера. Выбор пал на молодого доктора Н. Ф. Гамалею, который позже — 13 июня 1886 года — сделал в Одессе первые прививки двенадцати укушенным.

В XX веке были разработаны и стали успешно применяться прививки против полиомиелита, гепатита, дифтерии, кори, паротита, краснухи, туберкулеза, гриппа.

ОСНОВНЫЕ ДАТЫ ИСТОРИИ ВАКЦИНАЦИИ

Первая иммунизация против оспы — Эдвард Дженнер

Первая иммунизация против бешенства — Луи Пастер

Первая успешная серотерапия дифтерии — Эмиль фон Беринг

Первая профилактическая вакцина против дифтерии — Эмиль фон Беринг

Первая вакцинация против туберкулеза

Первая вакцинация против столбняка

Первая вакцинация против гриппа

Первая вакцинация против клещевого энцефалита

Первые испытания полиомиелитиой инактивированной вакцины

Полиомиелитная живая вакцина (пероральная вакцинация)

Заявление ВОЗ о полной ликвидации человеческой оспы

Первая общедоступная вакцина для профилактики ветряной оспы

Первая общедоступная генноинженерная вакцина против гепатита В

Первая вакцина для профилактики гепатита А

Первая комбинированная ацеллюлярная коклюшная вакцина для профилактики коклюша, дифтерии, столбняка

Первая вакцина для профилактики гепатитов А и В

Первая комбинированная ацеллюлярная коклюшная вакцина для профилактики коклюша, дифтерии, столбняка и полиомиелита

Разработка новой конъюгированной вакцины против менингококковой инфекции С

Первая конъюгированная вакцина для профилактики пневмонии

История развития и становления вакцинологии.

I. Вариоляция .

За много веков до н.э. появились наблюдения за различными формами невосприимчивости к инфекционным заболеваниям. Поэтому создавались попытки искусственного заражения здоровых людей с целью предотвращения заболевания во время эпидемий. Так, например в древнем Китае люди втягивали в нос высушенные и измельченные корочки оспенных больных, а в России в старину существовали народные способы предохранения от оспы с помощью втирания содержимого оспин в надрезы на коже. Таким образом сформировалась эмпирическая вакцинация для профилактики натуральной оспы – вариоляция (от лат. variola – оспа). Ужас перед оспой был огромный, и такой способ предохранения как «вариоляция» вселял хоть какую-то надежду. В отношении оспы эти попытки оказались успешными. Вместе с тем такой метод был небезопасен для здоровья и часто заканчивался возникновением острых форм заболевания и даже гибелью привитых (частота оспы – 1-20 случаев на 1000 привитых).

II. Вакцинация.

Эмпирические достижения Э. Дженнера.

История современной вакцинопрофилактики началась 14 мая 1796 г . В этот день Эдвард Дженнер привил против оспы 8-летнего мальчика. Материал для прививки он взял у молочницы, заразившейся коровьей оспой. Прививка прошла успешно, но надо было еще доказать, что привитый ребенок не заболеет если его заразить натуральной оспой. После мучительных колебаний, 1 июля 1796 г. он заражает ребенка. Мальчик не заболел. Начало оспопрививанию было положено. Эта вакцина явилась счастливой находкой, поскольку вирус коровьей оспы обладает идентичными антигенными свойствами с вирусом натуральной оспы человека, но маловирулентен. Таким образом, Э. Дженнер впервые предложил метод вакцинации – использование возбудителя с невысокой степенью патогенности (вирус коровьей оспы) для создания устойчивости к заражению возбудителем с высокой степенью патогенности (вирус натуральной оспы). Однако все это делалось без какого-либо представления о действующем начале и лишь в результате уникальных эмпирических находок.

Л. Пастер – основоположник современной иммунопрофилактики.

Открытия Луи Пастера заложили основы современной иммунопрофилактики . Л. Пастер вводит термин «вакцина» (от лат. vaccina – коровья). Заслугой Л. Пастера была разработка принципов получения вакцинных штаммов аттенуации (ослабление патогенных свойств микробов под влиянием различных факторов). Неожиданный случай помог Луи Пастеру сделать решительный шаг в области вакцинологии. Применяя культуру возбудителя куриной холеры, оставленную на длительный срок в термостате без пересева, Л. Пастер обнаружил, что она утратила патогенные свойства и вызывала у кур не заболевание, а стойкий иммунитет. Л. Пастером создал вакцины против сибирской язвы и бешенства.

В 1882 г. Р. Кох обнаружил возбудителей туберкулеза, а в 1914 г. А. Кальметт и Ж. Герен впервые получили живую вакцину против туберкулеза из ослабленных возбудителей.

В 1923 г. Гастон Рамон разработал метод получения анатоксинов с помощью обезвреживания токсинов формалином.

Заслуги отечественных ученых в развитии вакцинопрофилактики.

Первую отечественную вакцину создал в 1880 г. Л.С. Ценковский. Это была вакцина против сибирской язвы, которая использовалась вплоть до 1942 г.

В 1920 г. под руководством Н.Ф. Гамалеи в России была усовершенствована антирабическая вакцина.

Последующие поколения отечественных ученых создали эффективные вакцины:

§ вакцины против полиомиелита – М.П. Чумаков и А.А. Смородинцев (академиком А.А. Смородинцевым в Институте им. Л. Пастера в Санкт-Петербурге была основана собственная научная школа по получению живых вирусных вакцин, созданы эффективные вакцины против кори и паротита, в результате чего началась массовая профилактика этих инфекций в СССР);

§ вакцины против коклюша, дифтерии, столбняка – Н.Н. Гинзбург и др.

III. Современный этап.

§ Использование достижений медицины, биологии, физики, химии, генетики для создания профилактических препаратов нового поколения .

§ Ликвидация натуральной оспы, резкое снижение частоты особо опасных инфекций.

§ Значительное снижение заболеваемости дифтерией, корью и другими детскими инфекциями.

Вакцины (определение Л.Пастера) – это все прививочные препараты, получаемые из микроорганизмов, их антигенов и токсинов, которые применяются для активной иммунизации людей и животных с профилактическими и лечебными целями.

Вакцины – это препараты, обеспечивающие развитие искусственного активного иммунитета, который создает невосприимчивость к возбудителю.

Вакцины относятся к сложным иммунобиологическим препаратам. В их состав, кроме активного начала – антигена, входят его стабилизаторы, вещества активирующие действие антигена – адъюванты, а также консерванты.

В качестве действующего начала в вакцинах используют:

§ живые ослабленные бактерии и вирусы;

§ инактивированные тем или иным способом цельные микробы;

§ отдельные антигенные компоненты бактерий и вирусов, так называемые протективные (защитные) антигены;

§ вторичные, продуцируемые микробной клеткой метаболиты, играющие патогенетическую роль в инфекционном процессе и иммунитете, например, токсины и их обезвреженные дериваты-анатоксины;

§ полученные генно-инженерным способом или химическим синтезом молекулярные антигены – аналоги природных антигенов бактерий и вирусов.

Известно, что при высокой степени очистки антигена его иммуногенная активность уменьшается, что привело к необходимости применения адъювантов.

Адъювант (от лат. adjuvans – помогать) – вещество, неспецифически усиливающее иммунный ответ на антигены.

В качестве адъювантов могут использоваться минеральные вещества (гидрат окиси алюминия, фосфат алюминия, алюминиево-калиевые квасцы и т.д.), растительные (сапонины), микробные (липополисахаридобелковые комплексы, нуклеиновые кислоты, липиды, углеводы), синтетические вещества, искусственные адъювантные системы (липосомы, микрокапсулы).

Механизм действия адъювантов:

§ создание «депо» антигена в организме;

§ стимуляция фагоцитоза;

§ активация системы комплемента;

§ стимуляция образования цитокинов и др.

Таким образом, адъюванты в зависимости от своих свойств стимулируют гуморальный или клеточный иммунитет или одновременно оба вида иммунитета.

Производство вакцин.

Вакцины производят на специализированных предприятиях Министерства здравоохранения, на биофабриках («Иммуноген», «Биопрепарат» и др.), на базе институтов РАМН РФ и других ведомств.

Штаммы микроорганизмов, специально отобранные для изготовления вакцин, называются вакцинными .

Этапы изготовления вакцин:

1. Культивирование микроорганизмов на жидких (реже на плотных) средах при оптимальных температурных и других условиях (при изготовлении риккетсиозных и вирусных вакцин культивирование производят в куриных эмбрионах или культуре клеток).

2. Выделение, концентрирование и очистка целевого продукта с помощью различных методов.

3. Приготовление, стандартизация и контроль готового продукта.

Большинство вакцин выпускают в форме лиофилизированных препаратов, т.е. высушенных из замороженного состояния в глубоком вакууме. Это обеспечивает их длительное хранение.

Вакцинация - одна из самых горячих тем в спорах врачей и пациентов. Непонимание, слухи, мифы - все это заставляет людей бояться данной процедуры, что нередко приводит к печальным последствиям. Этой статьей «Биомолекула» начинает спецпроект о вакцинации и о врагах, которые с ее помощью успешно загнаны в подполье. И начнем мы с истории первых побед и горьких поражений, которые встречались на пути становления современной вакцинопрофилактики.

Изобретение вакцин кардинально изменило жизнь человечества. Многие болезни, уносившие тысячи, а то и миллионы жизней ежегодно, теперь практически не встречаются. В этом спецпроекте мы не только рассказываем об истории возникновения вакцин, общих принципах их разработки и роли вакцинопрофилактики в современном здравоохранении (этому посвящены первые три статьи), но и подробно говорим о каждой вакцине, включенной в Национальный календарь прививок, а также вакцинах против гриппа и вируса папилломы человека. Вы узнаете о том, что собой представляет каждый из возбудителей болезней, какие существуют варианты вакцин и чем они различаются между собой, затронем тему поствакцинальных осложнений и эффективности вакцин.

Для соблюдения объективности мы пригласили стать кураторами спецпроекта Александра Соломоновича Апта - доктора биологических наук, профессора МГУ, заведующего лабораторией иммуногенетики Института туберкулеза (Москва), - а также Сусанну Михайловну Харит - доктора медицинских наук, профессора, руководителя отдела профилактики НИИ детских инфекций (Санкт-Петербург).

Генеральный партнер спецпроекта - Zimin Foundation .

Партнер публикации этой статьи - компания «ИНВИТРО ». «ИНВИТРО» - это крупнейшая частная медицинская лаборатория, специализирующаяся на проведении лабораторных анализов и функциональной диагностики, включающая магнитно-резонансную томографию, маммо- и рентгенографию, УЗИ и другие.

Как вы думаете, какая сила в истории человечества была самой разрушительной и непреодолимой? Какое, по-вашему, явление природы было способно опустошать города и страны, уничтожать целые цивилизации?

Такая сила не могла не оставить следа в фольклоре и религиозных текстах тех, кто выжил под ее натиском. Если на свете было что-то, что могло влиять на течение истории, то древние люди резонно могли предположить, что именно оно рано или поздно станет орудием, с помощью которого божество уничтожит созданный им мир.

В христианской религиозной традиции есть текст, где все эти силы перечислены кратко и ёмко - «Апокалипсис». Действительно, в образе Всадников воплощены те явления, которые способны неожиданно настигнуть человека и разрушить как его самого, так и мир вокруг (рис. 1). Всадников четверо: это Голод, Война, Мор и Смерть, следующая за первыми тремя.

Насильственная или голодная смерть - давняя угроза человечеству. По мере развития нашего вида, мы образовывали всё бóльшие сообщества, чтобы избежать ее, и в какой-то момент начали строить города и селиться в них. Это давало защиту от диких зверей и соседей, а также позволяло наладить эффективную экономику, что защищало от голода.

Но в городах, с их плотностью населения и гигиеническими проблемами, нас ждал третий всадник. Мор, великий опустошитель. Эпидемии не раз и не два меняли политическую карту мира. Не одна империя, включая великую Римскую, пала, когда в нее, ослабленную чумой, пришли враги, которых она успешно отражала до болезни . Оспа, столь широко распространенная в Европе, была неизвестна в Америках, а по пришествии испанцев стала союзником конкистадоров в деле подчинения племен инков и ацтеков , . Союзником куда более верным и жестоким, чем меч или крест. Ее вообще любили использовать в качестве оружия как в Европе, забрасывая осажденные крепости телами жертв болезни с помощью катапульт , так и в Америке, раздавая под видом благотворительности непокорным коренным племенам одеяла, которыми ранее пользовались больные . Холера также внесла свои коррективы в ход многих политических процессов, уничтожая целые армии на марше (рис. 2) и осажденные города .

Сегодня, однако, люди уже не помнят, каково это - жить в пораженном чумой городе, где каждый день умирают тысячи людей, чудом уцелевшие бегут без оглядки, а мародеры наживаются на ограблении бежавших или умерших хозяев пустых домов. Мор, каким бы страшным он ни казался нашим предкам, практически изгнан из современного мира. За пять лет с 2010 по 2015 год чумой в мире заболели чуть более 3000 человек, а последняя смерть от оспы зарегистрирована в 1978 году.

Это стало возможным благодаря научным открытиям, одним из важнейших следствий которых является вакцинация. Семь лет назад на «Биомолекуле» вышла статья «Вакцины в вопросах и ответах » , которая с тех пор уверенно возглавляет топ-10 наиболее читаемых материалов сайта. Но сейчас мы решили, что представленную информацию нужно не только освежить, но и расширить, и поэтому начинаем большой спецпроект, посвященный вакцинации. В этой - вводной - статье мы последовательно рассмотрим, как люди победили одного из самых сильных своих врагов его же оружием.

Эмпирические знания

До возникновения современной науки борьба с таким страшным врагом, как эпидемии, имела эмпирический характер. За столетия человеческого развития общество сумело собрать массу фактов о том, как возникал и распространялся мор. Поначалу разрозненные факты к XIX веку оформились в полноценную, почти научную теорию миазмов , или «плохого воздуха». Исследователи еще со времен античности и вплоть до Нового времени полагали, что причиной болезней являлись испарения, изначально возникающие из почвы и нечистот, а впоследствии распространяемые заболевшим человеком. Любой, находящийся рядом с источником таких испарений, подвергался риску заболеть.

Теория, на каких бы неправильных основаниях она ни стояла, не только призвана объяснить явление, но и указать, как с ним бороться. Для оздоровления вдыхаемого воздуха средневековые врачи начали использовать специальные защитные одежды и маски с характерными клювами, набитыми лекарственными травами. Это одеяние и сформировало облик чумного доктора, знакомый каждому, кто сталкивался с описанием средневековой Европы в фильмах или книгах (рис. 3).

Другим следствием теории миазмов было то, что от болезни можно оградиться, сбежать, поскольку дурной воздух возникал в местах скопления людей. Потому люди быстро научились бежать от болезни, едва о ней заслышав. Сюжет произведения «Декамерон» Джованни Бокаччо завязан вокруг историй, которые рассказывают друг другу пытающиеся скоротать время молодые дворяне, сбежавшие из пораженной чумой Флоренции.

Ну и наконец, теория миазмов предлагала еще один способ борьбы с болезнью - карантин . Место, где отмечали начало заболевания, изолировалось от окружающих территорий. Никто не мог его покинуть, пока болезнь не заканчивалась. Именно из-за чумного карантина в Вероне гонец не смог своевременно доставить письмо Джульетты Ромео, в результате чего несчастный юноша уверился в гибели возлюбленной и принял яд.

Очевидно, что инфекционные заболевания и связанные с ними эпидемии были причиной очень сильного страха и служили важной направляющей силой развития общества (рис. 4). Как усилия образованных людей, так и народная мысль были направлены на поиск защиты от инфекций, уносивших столько жизней и так непредсказуемо влиявших как на отдельные судьбы, так и на целые государства.

Защита через заболевание

Еще в древности люди начали замечать, что для некоторых заболеваний свойственно однократное течение: человек, единожды переболевший такой болезнью, больше никогда ей не болел. Сейчас такими заболеваниями мы считаем ветрянку и краснуху, а раньше к ним относилась, например, и оспа.

Эта болезнь была известна со времен античности. Заболевание поражало кожу, на которой появлялись характерные пузыри. Смертность от оспы была довольно высокой, до 40% . Смерть, как правило, была следствием интоксикации организма. Выжившие же навсегда оставались изуродованы оспенными рубцами, покрывавшими всю кожу.

Еще в древности люди заметили, что отмеченные этими рубцами никогда не заболевают во второй раз. Это было очень удобно для медицинских целей - во времена эпидемий такие люди использовались в лазаретах в качестве младшего медицинского персонала и могли бесстрашно помогать зараженным.

На Западе в Средние века оспа была столь распространена, что некоторые исследователи полагали, что каждый человек обречен хотя бы раз ей заболеть . Оспенные рубцы покрывали кожу людей всех сословий, от простых крестьян до членов королевских семей . На Востоке же был дополнительный нюанс, стимулирующий общество к поиску защиты от оспы. Если на Западе наличие или отсутствие оспенных рубцов мало влияло на экономическую составляющую жизни человека, то в арабских странах процветали гаремы и торговля рабами. Рябой раб или тем более предназначенная для гаремной жизни девушка несомненно теряли свою ценность и приносили убытки своей семье или хозяину. Потому неудивительно, что первые медицинские процедуры, направленные на защиту от оспы, пришли именно с Востока.

Никто не знает, где впервые придумали вариоляцию - намеренное заражение здорового человека оспой путем введения содержимого оспенного пузырька под кожу при помощи тонкого ножа. В Европу она пришла через письма, а потом и личную инициативу леди Монтак, путешествовавшей по восточным странам и обнаружившей эту процедуру в Стамбуле в 1715 году. Там же она вариолировала своего пятилетнего сына, а по приезде в Англию убедила привить оспу своей четырехлетней дочери. Впоследствии она активно агитировала за вариоляцию в Европе и ее усилия привели к повсеместному внедрению этого метода .

Несомненно, турки не были изобретателями такого подхода, хоть и активно применяли его . Вариоляция давно была известна в Индии и Китае, ее применяли и на Кавказе - везде, где красота могла быть прибыльным товаром. В Европе и Америке процедура получила поддержку власть имущих. В России ей подверглись императрица Екатерина Вторая и вся ее семья и двор . Джордж Вашингтон в ходе войны за независимость США от Англии столкнулся с тем, кто его армия куда сильнее страдала от оспы, нежели вариолированная армия Британии. В ходе одной из зимовок он привил оспу всем своим солдатам и этим защитил армию от заболевания , .

Величайшее открытие

При всех ее плюсах, вариоляция несла в себе и опасность. Смертность среди людей, которым привили оспу, составляла около 2%. Это несомненно меньше, чем смертность от собственно заболевания, однако оспой можно было и не заболеть, а вариоляция представляла собой непосредственную угрозу. Нужна была эффективная, но вместе с тем более безопасная замена вариоляции.

Постулаты Коха и туберкулез

Оспа была крайне удобным заболеванием с точки зрения вакцинации. Больной как бы покрывался естественными резервуарами с возбудителем - бери и вакцинируй. Но что делать с другими заболеваниями: холерой, чумой, полиомиелитом? Об истинных причинах болезней еще никто не знал. О существовании микроорганизмов мир узнал еще в 1676 году из работ изобретателя самых совершенных оптических микроскопов, голландского лавочника и члена Королевского общества Великобритании Энтони ван Левенгука (о нем и о его открытиях мы уже рассказывали в статье «12 методов в картинках: микроскопия » ). Он же высказал смелую гипотезу, что открытая им жизнь может вызывать заболевания, однако ее не услышали .

Все изменилось, когда за дело взялись двое выдающихся ученых XIX века - Луи Пастер и Роберт Кох . Пастер сумел доказать отсутствие самозарождения жизни и параллельно открыл один из способов обеззараживания растворов, который мы до сих пор применяем - пастеризацию. Кроме того, он изучил основные инфекционные заболевания и пришел к выводу, что их вызывают микроорганизмы. Предметом его особого интереса были сибирская язва и ее возбудитель, Bacillus anthracis .

Современник Пастера Роберт Кох совершил настоящую революцию в микробиологии, причем даже не одну. К примеру, он придумал способ культивирования на твердых средах. До него бактерий выращивали в растворах, а это было неудобно и часто не давало нужных результатов. Кох предложил использовать в качестве подложки желе из агара или желатина. Метод прижился и используется в микробиологии до сих пор. Одним из важнейших его преимуществ является возможность получения так называемых чистых культур (штаммов ) - сообществ микроорганизмов, состоящих из потомков одной клетки.

Новая методология позволила Коху уточнить микробиологическую теорию инфекций. Он сумел вырастить чистые культуры холерного вибриона, сибиреязвенной бациллы и многих других организмов. В 1905 году его заслуги отметили незадолго до этого учрежденной Нобелевской премией по физиологии и медицине - «за открытие возбудителя туберкулеза» .

Свое понимание природы инфекций Кох выразил в четырех постулатах, которые до сих пор используют врачи (рис. 9). По Коху, микроорганизм является причиной заболевания, если выполняется следующая последовательность действий и условий:

  1. микроорганизм постоянно встречается у больных и отсутствует у здоровых;
  2. микроорганизм выделяют и получают чистую культуру;
  3. при введении чистой культуры здоровому он заболевает;
  4. у больного, полученного после третьего шага, выделяется тот же микроорганизм.

С течением времени эти постулаты немного менялись, однако именно они стали основой для дальнейшего развития вакцинации. Благодаря созданным Пастером и Кохом методам культивирования стало возможным получение аналога той жидкости, которая в случае с оспой становилась доступна сама по себе. Нагляднее всего влияние этих достижений можно видеть в случае с вакциной БЦЖ , нанесшей первый удар по бичу казарм и тюрем - туберкулезу.

Для разработки вакцины против туберкулеза использовали возбудителя бычьего туберкулеза - Mycobacterium bovis . Еще сам Роберт Кох отделил его от возбудителя человеческого туберкулеза - Mycobacterium tuberculosis . В отличие от коровьей оспы, вызывавшей лишь легкое недомогание, бычий туберкулез опасен для людей, и применение бактерии для вакцинации было бы неоправданным риском. Двое сотрудников института Пастера в Лилле придумали остроумное решение. Они высеяли возбудителя бычьего туберкулеза на среду, состоящую из смеси глицерина и картофельного крахмала. Для бактерии это было райским курортом. Только, в отличие от современных офисных сотрудников, бактерии провели в таких условиях не две недели, а 13 лет. 239 раз врач Кальметт и ветеринар Герен пересеивали бактерию на новую среду и продолжали культивирование. После такого долгого периода спокойной жизни бактерия в ходе вполне естественных эволюционных процессов потеряла свою вирулентность (способность вызывать заболеввание) почти полностью и перестала быть опасной для людей. Так люди поставили себе на службу эволюцию, а врачи получили сильнейшее оружие - вакцину против туберкулеза. Сегодня эта бактерия известна нам как BCG (bacillus Calmette-Guirine ) - бацилла Кальметта-Герена (в русскоязычной литературе из-за лингвистического казуса она стала называться БЦЖ, а господина Герена переводчики переименовали в Жюрена), которой мы посвяттим отдельную статью нашего спецпроекта.

Восход солнца

Вакцины хорошо защищали человека от некоторых бактериальных инфекций благодаря Пастеру, Коху и их последователям. Но как быть с вирусами? Вирусы не растут на чашках и в бутылках сами по себе, применение к ним постулатов Коха (особенно касаемо выделения чистой культуры) невозможно. Историю появления противовирусных вакцин нагляднее всего показать на примере полиомиелита. По драматичности она, пожалуй, не уступит многим современным блокбастерам.

Вакцина Солка стала первой коммерчески доступной. Во многом это произошло благодаря беспримерному на тот момент тестированию - более миллиона детей получили вакцину, что позволило убедительно доказать ее эффективность . Вплоть до недавнего времени она успешно применялась в США. Важной проблемой оказалось то, что иммунитет от вакцинации со временем сходил на нет, и требовались бустерные (повторные) инъекции раз в несколько лет.

О том, как устроены современные клинические исследования, можно прочитать в одноименном спецпроекте «Биомолекулы» . - Ред.

Вакцина Сейбина появилась на рынке чуть позже вакцины Солка. Она отличалась от первой как по наполнению, так и по способу применения - ее закапывали в рот, таким же путем, как в организм попадает обычный полиовирус. Результат работы Сейбина оказался не только эффективнее вакцины Солка (иммунитет длился дольше), но и лишен бóльшей части недостатков вакцины Кольмера: побочные эффекты случались значительно реже. Впоследствии отметили еще один интересный эффект этой вакцины: оставаясь живым вирусом, пусть и неспособным вызвать полноценный полиомиелит у подавляющего большинства пациентов, она тем не менее сохраняла инфективность - могла передаваться от вакцинированного человека невакцинированному. Это приводило к распространению вакцинирования без участия врачей. В настоящий момент для совмещения преимуществ обоих видов вакцины, детей сначала прививают убитым вирусом, а после нескольких процедур переходят на ослабленный. Это позволяет получить сильную защиту практически без риска побочных эффектов . О вакцинации против полиомиелита мы поговорим подробнее в соответствующей статье спецпроекта.

Солк еще при жизни стал легендой. После беспримерных по меркам здравоохранения того времени затрат на разработку и тестирование вакцины он отказался патентовать результат своего труда. Когда в одном из интервью его спросили, почему он этого не сделал, он, смеясь, ответил: «А вы бы запатентовали солнце?» (видео 1).

Видео 1. Джонас Солк о патенте на вакцину

To be continued...

Первую настоящую вакцину осознанно ввел ребенку в 1774 году Бенджамин Джести. Почти 250 лет назад началось движение, благодаря которому люди практически забыли о третьем всаднике Апокалипсиса, имя которому Мор. С тех пор мы официально избавились от оспы, образцы которой хранятся лишь в нескольких лабораториях по всему миру. Полиомиелит не побежден, но количество ежегодных случаев уже измеряется единицами, а не десятками тысяч, как полвека назад. Холера, столбняк, дифтерия, сибирская язва - всё это призраки прошлого, которые уже почти не встречаются в современном мире. В книге «Добрые предзнаменования » Терри Пратчетт и Нил Гейман отразили это изменение общественного сознания, заменив всадника Апокалипсиса по имени Мор на Загрязнение окружающей среды. Но это уже совсем другая история...

Человечество прошло долгий путь к пониманию природы болезней и понесло значительные потери, пока разрабатывались способы защиты от них. И тем не менее мы справились. Природа постоянно бросает нам новые вызовы, то в виде ВИЧ, то лихорадки Зика. Грипп мутирует каждый год, а герпес умеет прятаться в организме и ждать подходящего часа, никак себя не проявляя. Но работа над новыми вакцинами кипит, и скоро мы услышим новости с фронтов о победе над новыми и старыми врагами. Пусть же Солнце светит вечно!

Партнер публикации этой статьи - медицинская компания «ИНВИТРО»

Компания «ИНВИТРО » выполняет и развивает лабораторную диагностику в России вот уже 20 лет. Сегодня «ИНВИТРО» - крупнейшая частная медицинская лаборатория, имеющая более 1000 офисов на территории России, Украины, Белоруссии, Казахстана, Армении и Киргизии. Направления ее деятельности - лабораторные анализы и функциональная диагностика, включающая магнитно-резонансную томографию, маммо- и рентгенографию, УЗИ и другие.

Лабораторная диагностика

«ИНВИТРО» использует в своей работе высококачественные тест-системы ведущих мировых производителей и высокотехнологичные IT-решения. Так, применяемые в лаборатории анализаторы объединены уникальной для России информационной системой SafirLIS, которая обеспечивает надежную регистрацию, хранение и быстрый поиск результатов исследований.

Политика в области качества в компании основана на международных стандартах, предполагает многоуровневое обучение сотрудников и внедрение самых современных достижений лабораторной диагностики. Результаты исследований, полученные в лабораториях «ИНВИТРО», признают во всех медицинских учреждениях.

«ИНВИТРО» регулярно участвует в программах оценки качества - ФСВОК (Федеральная система внешней оценки качества клинических лабораторных исследований; Россия), RIQAS (Randox, Великобритания) и EQAS (Bio-Rad, США).

Выдающиеся достижения компании в области качества отмечены на государственном уровне: в 2017 году «ИНВИТРО» стала лауреатом соответствующей Премии правительства РФ.

Инновации - важнейшее направление для «ИНВИТРО». Компания является основным инвестором первой в России частной лаборатории биотехнологических исследований 3D Bioprinting Solutions , открывшейся в Москве в 2013 году. Эта лаборатория считается одним из мировых лидеров в области трехмерной биопечати, первой в мире напечатавшей щитовидную железу мыши.

Материал предоставлен партнёром - компанией «ИНВИТРО»

Литература

  1. Michaela Harbeck, Lisa Seifert, Stephanie Hänsch, David M. Wagner, Dawn Birdsell, et. al.. (2013). Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights into Justinianic Plague . PLoS Pathog . 9 , e1003349;
  2. Francis J. Brooks. (1993). Revising the Conquest of Mexico: Smallpox, Sources, and Populations . Meiet, 1577. - 114 p.;
  3. Nicolau Barquet. (1997). Smallpox: The Triumph over the Most Terrible of the Ministers of Death . Ann Intern Med . 127 , 635;
  4. Inaya Hajj Hussein, Nour Chams, Sana Chams, Skye El Sayegh, Reina Badran, et. al.. (2015). Vaccines Through Centuries: Major Cornerstones of Global Health . Front. Public Health . 3 ;
  5. Gulten Dinc, Yesim Isil Ulman. (2007). The introduction of variolation ‘A La Turca’ to the West by Lady Mary Montagu and Turkey"s contribution to this . Vaccine . 25 , 4261-4265;
  6. Микиртичан Г.Л. (2016). Из истории вакцинопрофилактики: оспопрививание . Российский педиатрический журнал . 19 , 55–62;
  7. Ann M. Becker. (2004). Smallpox in Washington"s Army: Strategic Implications of the Disease During the American Revolutionary War . The Journal of Military History . 68 , 381-430;
  8. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society Humoral and Mucosal Immunity in Infants Induced by Three Sequential Inactivated Poliovirus Vaccine-Live Attenuated Oral Poliovirus Vaccine Immunization Schedules . Journal of Infectious Diseases . 175 , S228-S234.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство здравоохранения и социального развития РФ ГБОУ ВПО

«Иркутский государственный медицинский университет»

Кафедра эпидемиологии

Доклад на тему: История вакцинопрофилактики

Выполнила:

студентка 504 гр.

Макарова О.В.

Иркутск 2015

Историю создания средств специфической профилактики можно разделить на три периода:

1. Бессознательные попытки на заре научной медицины искусственно заражать здоровых людей и животных выделениями от больных с легкой формой заболевания.

2. Создание большого количества вакцин из убитых бактерий.

3. Создание и применение живых, убитых, субъединичных вакцин.

Первый период ознаменовался гениальным открытием живых вакцин Э. Дженнером (1796) и Л. Пастером (1880). Хотя в основе этих открытий лежали опыт и наблюдения (Э. Дженнер), знание этиологии и сознательный эксперимент (Пастер), главным в этот почти столетний период было искусственное заражение с последующим переболеванием, то есть вызвать «легкую болезнь» с тем, чтобы человек не заболел ею в тяжелой смертельной форме. Вакцина Дженнера против оспы, вакцины Пастера против холеры кур (1880), сибирской язвы (1880-1883), рожи свиней (1882-1883), бешенства (1881-1886) содержали живых возбудителей болезни, ослабленных различными методами: возбудитель холеры кур - длительным хранением культур в бульоне, воздействием на возбудителя сибирской язвы повышенной температурой (42,5 °С), пассажем возбудителя рожи через организм голубей и кроликов, пассированием вируса бешенства через организм кроликов.

Натуральная оспа (Variola vera) относится к особо опасным острым вирусным инфекциям. Полагают, что она возникла более 3000 лет назад в Индии и Египте и долгое время оставалась одним из самых страшных заболеваний, известных человечеству. Многочисленные эпидемии оспы охватывали целые континенты, уничтожая их население и изменяя ход истории. Эта страшная болезнь казалась жестокой неизбежностью, недаром бытовала поговорка «Любовь и оспа минуют лишь немногих».

Тот, кто не умирал от оспы, мог остаться инвалидом, если оспа щадила жизнь, то часто оставляла после себя неизгладимые следы. Множество людей были обезображены рубцами, одних она лишала слуха, других - зрения (причиной слепоты в 70% случаев являлась оспа). В средневековой Европе эпидемии оспы были настолько часты и тотальны, что у врачей сложилось твердое убеждение: каждый человек должен переболеть оспой. Знаменитый врач XVII века Сиденгам называл оспу «отвратительной болезнью, унесшей в могилу больше жертв, чем все другие эпидемии, чем порох и война».

В Средние века смертность от оспы доходила до 80%. В Америке целые племена были уничтожены этой опасной болезнью. В конце XVII и начале XVIII столетия оспа приняла размеры истинного бедствия. Когда оспенная эпидемия пришла в Мексику, от нее погибло три с половиной миллиона человек. Профессор медицины в Галле И.К. Юнкер определил цифру ежегодной смертности от оспы в Европе в 400 000 человек. Зараза похищала каждого десятого, поселения вымирали, ни одно сословие не было застраховано от заражения, особенно велика была смертность среди детей. В одном только Берлине за период 1758-1774 годов умерло от оспы 6705 человек.

Однажды в семействе одного фермера дочь заболела оспой. Все, кто за ней ухаживали, также заболели, за исключением молодой девушки, которая раньше работала на ферме дояркой. Дженнер выяснил, почему находясь, долгое время в контакте с больной, эта девушка не заболела. Доктору Дженнеру было известно, что эта девушка как-то при дойке коровы, прикоснувшись к покрытому пустулами вымени и заразилась коровьей оспой. Болезнь она перенесла легко, хотя на ее пальцах появились подобные же пустулы (пузырьки), а затем и рубцы. Нетрудно было догадаться, что у нее появился иммунитет.

Лишь после целого ряда подобных опытов Дженнер решился искусственно прививать людям коровью оспу. В течение двадцати лет Дженнер искусственно прививал коровью оспу людям, затем посредством вариоляции проверял, действительно ли они теряют восприимчивость к человеческой оспе.

В 1884 году Л.С. Ценковский в России, используя принцип аттенуации (ослабления) по Пастеру, приготовил свои вакцины против сибирской язвы. В 1908 году Wall и Leclainche получили вакцину против эмкара из культур возбудителя, выращенных при 43-44° С, или культуры, выращенные в средах со специфической сывороткой. Затем подобные живые вакцины были получены против холеры людей (Хавкин В., в Индии, 1890-1896; Nikole, 1912). В 1897 году Р. Кох в практику профилактических прививок против чумы крупного рогатого скота предложил живой вирус из желчи убитых, больных или павших от чумы животных. Эти прививки давали отход до 30%. Вскоре Ненцкий, Забер и Выжникевич заменили их «симультанными» прививками, то есть одновременным введением с живым вирусом специфической сыворотки.

На этом первый, самый ранний период разработки живых вакцин заканчивается, вместе с ним заканчивается и первый период развития иммунологии.

Второй период характеризуется изготовлением вакцин из убитых бактерий и открытием большого количества возбудителей заболеваний. И смело можно сказать, что не было такого микроорганизма, который бы в убитом состоянии не использовался в качестве вакцины. Официальным началом этого периода следует считать 1898 год (Kolle Pieiffer), он дал богатые плоды для медицины и ветеринарии в создании так называемых корпускулярных вакцин. В то же время он принес науке много удивительных открытий и разочарований. Этот период не закончен и сейчас, так как из-за отсутствия эффективных профилактических препаратов мы пользуемся убитыми корпускулярными вакцинами при целом ряде инфекций, хотя имеются совершеннейшие методы аттенуации микроорганизмов.

В разработке живых вакцин этот период сыграл печальную роль. Он задержал их развитие более чем на 20 лет. Но в то же время в этот период бытовало мнение о недостаточной эффективности убитых вакцин. Ученые не оставляли поисков все новых и новых живых вакцин, как наиболее эффективных и экономичных профилактических препаратов.

В третий период (с 1930 года) в равной мере получили развитие живые, убитые и так называемые химические вакцины из очищенных антигенов, то есть третий период характеризуется развитием обоих направлений.

Способы улучшения убитых вакцин были связаны с применением различных физических и химических агентов для обезвреживания микробов, подбором штаммов с полноценными антигенами, введение «щадящих» режимов инактивации культур микробов, использованием очищенных, так называемых протективных, антигенов (химических вакцин). Изготовление живых вакцин в 20-60-х годах текущего века не стояло на месте. Разработки получения живых вакцин проводились, нo несколько более замедленными темпами, чем убитых вакцин. Лишь в последние 20-30 лет мы становимся свидетелями широкого производства живых вакцин и замены ими убитых вакцин, не всегда являющихся эффективными.

Во второй половине XIX века Луи Пастером и его учениками был найден метод ослабления возбудителей куриной холеры, сибирской язвы и бешенства и доказана возможность применения их для иммунизации.

Великий французский химик Луи Пастер родился в 1822 году. Когда ему было 9 лет, в городе Арбуа, где жила семья Пастеров, бешеный волк покусал 8 человек. Луи видел, как кузнец прижигал раскаленным железом рану пострадавшего, и слышал крик боли. Через несколько дней больной умер. Этот случай произвёл на мальчика потрясающее впечатление. С того времени прошло 50 лет. Профессор Пастер был на верху славы. В 1872 году австрийское правительство присуждает ему премию за работу о болезнях шелковичных червей. К этому времени знаменитый химик пришёл к выводу, что все заразные болезни вызываются бактериями. В 1873 году он избирается во Французскую медакадемию и получает золотую медаль Лондонского королевского общества. Французское правительство назначает ему национальную дотацию пожизненно.

В 1879-1880 годах ученый изучает куриную холеру. Он изолировал возбудителя болезни и, пересевая ее на питательных средах, всегда убеждался в том, что введение этих бактерий курам неизбежно вызывало их смерть. Однажды Пастер не произвёл пересевы возбудителя, и он простоял в термостате длительное время. Впрыскивание этого микроба не вызвало гибели птиц. Когда же у Пастера снова был в руках возбудитель, он ввел его как птицам, которым не вводились бактерии, так и тем, которым уже впрыскивался ранее возбудитель, не вызвавший их гибели. Результаты оказались неожиданными. Все куры, которым предварительно были введены бактерии, остались живы, те же, которым возбудитель ранее не вводился, вскоре погибли.

Повторение опытов дало те же результаты. Это позволило Пастеру прийти к заключению, что: 1) длительное хранение возбудителя куриной холеры в термостате при доступе воздуха приводит к его ослаблению; 2) предварительное введение ослабленного возбудителя курам делает их невосприимчивыми к этой болезни.

Так родилась идея о предохранительных прививках, которая была использована Пастером в его последующих работах с бактериями.

Открылись перспективы для изменения возбудителя с целью получения материала, необходимого для прививок.

Установленный Пастером принцип ослабления патогенных бактерий позволил ему провести аналогичные опыты с сибирско-язвенной палочкой. Этот микроб образовывал споры, и вводить их в живой организм не имело смысла. Установив, что при 42-43 градусах Цельсия возбудитель сибирской язвы растет, но не образует спор, Пастер поступил с ним таким же образом, как с возбудителем куриной холеры. Он получил микроб, утративший вирулентность (степень болезнетворности), но сохранивший иммуногенность. Проверка таких ослабленных микробов выяснила, что их введение животным приводит к тому, что последние уже не погибают при впрыскивании им вирулентной культуры. Оставалась последняя проверка - эксперимент на сельскохозяйственных животных в присутствии комиссии и интересующихся результатом прививки ветеринарных и медицинских врачей, а также широкой публики.

Такая проверка осуществилась 31 мая 1881 года на ферме в Пуйи-ле-Фор. Результаты были блестящи. Все овцы, которым через определенный срок после прививок был впрыснут ослабленный возбудитель сибирско-язвенной палочки, остались живы. Все животные, которым не были сделаны прививки, погибли. Благоприятное действие прививок доказано также на коровах. Вскоре метод получил широкое распространение во всем мире, и заболевание сибирской язвой сельскохозяйственных животных стало редкостью.

Работы по куриной холере и сибирской язве позволили Пастеру в 1881 году выступить в Лондоне на Международном конгрессе врачей с докладом о прививках при этих заболеваниях. За это достижение французское правительство наградило Пастера большой лентой ордена Почётного Легиона, а Академия Наук присвоила ему звание академика.

Бесспорно, исследования Пастера, приведшие его к разработке метода предохранительных прививок, не только заложили основы новой науки -- иммунологии, но сделали возможным развитие одного из наиболее важных разделов профилактической медицины. Но перенесение этих данных на другие инфекционные болезни затруднялось тем, что их возбудители еще не были открыты. Поэтому Пастер продолжал искать микробы, вызывающие различные заболевания.

Самой выдающейся работой Пастера следует считать его изучение бешенства, закончившееся предложением прививок. Перед глазами 60-ти летнего Пастера стояли виденные в детстве картины гибели людей от бешенства.

Достаточно небольшого укуса, слюны больного животного, попавшей в рану или глаза, и человека уже не спасти. Иногда казалось, что все обошлось. Жжение, зуд в месте укуса напоминали о встрече с животным. Ранка даже могла зарубцеваться, и вдруг - бессонница, угрюмость, раздражительность. Человек не сможет пить, мучаясь от судорог в глотке. Дальше водобоязнь проявляется еще ярче: одно только слово «вода» - причина судорог с задержкой дыхания. Потом приступы судорог возникают от дуновения воздуха, яркого света, шума, прикосновения. Начинается слюноотделение, галлюцинации, ярость. Через пару дней начинаются малые параличи, и, наконец, измученный человек умирает при полном сознании от паралича сердца и дыхания. Страшная картина. Долго искал Пастер возбудителя бешенства и пришёл к выводу, что «бактерия слишком мала».

Проверяя инфекционность мозга животных, больных бешенством, Пастер нашел, что заражение мозгом дает чаще положительные результаты, чем заражение слюной. Далее он убедился, что введение вещества мозга больного животного в мозг кролика приводит к значительному сокращению инкубационного периода болезни, а последовательные пассажи вируса на кроликах дают возможность получить вирус, вызывающий заболевание уже через семь дней. Мозг больного кролика, подвешенный в стеклянном сосуде над едким натром, постепенно высыхает и одновременно с этим содержащийся в нем вирус ослабевает. Повторное введение такого мозга в виде растертой с физраствором кашицы здоровому животному делает его невосприимчивым к бешенству. Собаки, которым были сделаны эти прививки, помещались в клетки вместе с бешеными собаками. Несмотря на укусы бешеных собак, ни одно из них не заболело бешенством.

Бешенство - ужасная, но редкая у человека болезнь, поэтому делать прививки здоровым людям нецелесообразно, так как мало шансов быть покусанным бешеным животным. На этом этапе исследований у Пастера зародилась блестящая идея воспользоваться тем, что при бешенстве обычно бывает очень длительный инкубационный период. Он предположил, что, вводя все более и более сильный вирус покусанному животному, можно получить иммунитет до того как вирус, попавший при укусе, распространится по организму и вызовет заболевание. Это предположение полностью подтвердилось.

Собакам, укушенным бешеной собакой, вводился растертый мозг кролика, содержащий вирус. Вначале, впрыскивался мозг, сушившийся длительное время, т. е. содержавший ослабевший вирус, а затем мозг менее высушенный, с более активным вирусом.

Это подтвердило, что введение ослабленного вируса бешенства предохраняет от заболевания собаку, покусанную бешеным животным.

Задача решена - найден метод, позволивший спасать людей от мучительной смерти. Дальнейший шаг - начать прививки человеку - был сложным для Пастера. Толчком послужил приезд в июле 1885 года в Париж девятилетнего мальчика Жозефа Мейстера, искусанного бешеной собакой. Он оказался первым, кому после больших колебаний Пастер сделал прививки против бешенства. Инъекции длились 2 недели. В результате мальчик не заболел. 27 октября 1885 года Пастер выступил в Академии наук с докладом о результатах своих исследований по бешенству.

О значении метода прививок Пастера говорит тот факт, что после его работ усилиями ученых всех стран были разработаны предохранительные прививки почти против всех известных инфекционных заболеваний как бактериальной, так и вирусной этиологии. Они резко снизили заболеваемость населения этими болезнями и позволили почти полностью ликвидировать отдельные инфекции. Исключительно большие успехи в этой области достигнуты также в ветеринарии, так как предохранение сельскохозяйственных животных от ряда эпидемических болезней зависит от своевременности прививок.

Борьба с туберкулёзом

Во второй половине 19 века в Германии от туберкулеза умирал каждый седьмой человек. Туберкулез считался наследственной болезнью. Больным прописывали свежий воздух и хорошее питание. Французский врач Виллемен выяснил, что болезнь заразна, и должен быть микроб, который ее вызывает. Врач Конгейм нашёл возбудителя туберкулеза. Многие врачи 19 века пытались найти способ борьбы с этим заболеванием, но все попытки были напрасны.

Успех пришёл к немецкому врачу ^ Генриху Герману Роберту Коху. В 1872 году Кох, будучи уездным санитарным врачом, проводил целые дни у микроскопа, который подарила ему жена на двадцативосьмилетние. 24 марта 1882 года Кох объявил о том, что сумел выделить бактерию, вызывающую туберкулез.

Но, продолжая исследования, сосредоточившись на поисках способов лечения этого заболевания, в 1890 году Коху удалось выделить туберкулин (стерильную жидкость, содержащую вещества, вырабатываемые бациллой туберкулеза), который вызывал аллергическую реакцию у больных. Однако на самом деле туберкулин не стал применяться для лечения туберкулеза, т. к. особым терапевтическим действием он не обладал, но мог использоваться в диагностике туберкулеза.

Вакцину против туберкулеза нашли позже в 1921 году французские учёные ^ Альбер Шарль Кальмет и К. Жерен. В честь них произошло ее название - БЦЖ - бацилла Кальмета-Жерена. Прививку этой вакцины делают детям на 3 день после рождения. Ежегодно детей проверяют на зараженность туберкулезом, делая им внутрикожную пробу - реакцию Манту, а взрослым необходимо пройти флюорографическое обследование.

Основные даты истории вакцинации

1769 -- первая иммунизация против оспы, доктор Дженнер

1885 -- первая иммунизация против бешенства, Луи Пастер

1891 -- первая успешная серотерапия дифтерии, Эмиль фон Беринг

1913 -- первая профилактическая вакцина против дифтерии, Эмиль фон Беринг

1921 -- первая вакцинация против туберкулеза

1936 -- первая вакцинация против столбняка

1936 -- первая вакцинация против гриппа

1939 -- первая вакцинация от клещевого энцефалита

1953 -- первые испытания полиомиелитной инактивированной вакцины профилактика оспа холера

1956 -- полиомиелитная живая вакцина (пероральная вакцинация)

1980 -- заявление ВОЗ о полной элиминации человеческой оспы

1984 - первая общедоступная вакцина для профилактики ветряной оспы.

1986 -- первая общедоступная генно-инженерная вакцина против гепатита В

1987 -- первая конъюгированная вакцина против Хиб

1992 - первая вакцина для профилактики гепатита А

1994 -- первая комбинированная ацеллюлярная коклюшная вакцина для профилактики коклюша, дифтерии, столбняка

1996 - первая вакцина для профилактики гепатитов А и В

1998 - первая комбинированная ацеллюлярная коклюшная вакцина для профилактики коклюша, дифтерии, столбняка и полиомиелита

1999 -- разработка новой конъюгированной вакцины против менингококковой инфекции С

2000 -- первая конъюгированная вакцина для профилактики пневмонии

Размещено на Allbest.ru

...

Подобные документы

    Теоретические основы организации вакцинопрофилактики. Проведение профилактических прививок против Гепатита В, дифтерии, кори, гемофильной палочки. Побочные реакции после проведения вакцинации. Меры для предупреждения распространения инфекции в учреждении.

    дипломная работа , добавлен 19.05.2015

    Правовые и этические аспекты вакцинопрофилактики. Три группы вопросов, наиболее важных с точки зрения соблюдения прав человека и медицинской этики. Факторы, способствующие возникновению побочных реакций от вакцин, их применение в медицинской практике.

    реферат , добавлен 03.12.2015

    Краткая биография французского химика, основоположника современной микробиологии и имунологии Луи Пастера. Направления и результаты его научной деятельности. Создание вакцины против сибирской язвы, прививки против бешенства. Увековечивание памяти ученого.

    презентация , добавлен 13.04.2016

    Возбудитель сибирской язвы: морфология и биохимические свойства. Токсинообразование и антигенная структура, устойчивость. Диагностика бациллы антракса: бактериоскопия, посев, биопроба, иммунофлюоресцентный тест, серологическое исследование. Профилактика.

    реферат , добавлен 11.07.2008

    Характеристика возбудителя сибирский язвы. Термолабильный экзотоксин. Генетический аппарат сибиреязвенного микроба. Эпидемические вспышки сибирской язвы. Территориальное распределение сибирской язвы. Алиментарный путь заражения. Переносчики возбудителя.

    реферат , добавлен 28.06.2009

    Краткая история бешенства как заболевания человека и теплокровных животных. Этиология, патогенез и способы передачи инфекции бешенства. Инкубационный период и клинические симптомы заболевания. Методы диагностики, лечения и профилактики бешенства.

    реферат , добавлен 02.11.2012

    Таксономическое положение возбудителя сибирской язвы. Входные ворота инфекции, инкубационный период, клинические проявления. Бактериоскопический и бактериологический методы лабораторной диагностики. Споры палочки сибирской язвы. Окраска по Ганзену.

    презентация , добавлен 02.05.2016

    Формы гемофильной инфекции (ХИБ), факторы повышенного риска заражения. Вакцинация как способ профилактики, её классические и альтернативные схемы. Результаты вакцинопрофилактики: снижение респираторных инфекций, потребности в антибактериальной терапии.

    презентация , добавлен 30.10.2013

    Общая характеристика возбудителей трематодозов человека и их распространение в связи с климатическими и ландшафтными особенностями регионов. Источники, пути и факторы передачи возбудителей. Биологические основы профилактики трематодозов в войсках.

    реферат , добавлен 04.02.2011

    Клиническая картина холеры. Восстановление и поддержание циркулирующего объема крови и электролитного состава тканей. Раннее выявление, изоляция и лечение больных и вибрионосителей. Септическая и легочная формы чумы. Вегетативные стадии сибирской язвы.

Выбор редакции
В зависимости от вида штрафа, в 1С 8.3 применяется различный порядок отражения в учете. Рассмотрим наиболее распространённые ситуации. На...

1. Для начала необходимо отобрать початки кукурузы. Они должны быть одинакового размера и не очень крупные. Именно поэтому лучше отдать...

Скумбрия тушеная — общие принципы приготовления Тушеная скумбрия – простое в приготовлении, вкусное и очень полезное блюдо. Для него не...

Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
С наступлением поста многие из нас задаются вполне обоснованными вопросами. Например, таким: «Можно ли есть в пост морепродукты?» Здесь...
Карп – один из символов водной стихии. Кроме того, эта рыба во многих культурах наделяется особыми свойствами. К примеру, на востоке...
Две недели назад 36-летняя Анастасия Мыскина объявила о расставании с гражданским мужем, политиком и бизнесменом Сергеем Мамедовым....
Почти у всех людей, изучающих английский язык, возникают трудности при изучении грамматики. И речь идет не только о понимании правил...