Эльфы спрайты джеты. Красные спрайты, синие струи и другие необычные виды молний. Как излучают молекулы


Люди до сих пор слабо изучили природу удивительного атмосферного явления: молнии, бьющей во время грозы в землю. Еще меньше информации о необычных разновидностях молний, к примеру, высотных типов или шаровой молнии, которые можно наблюдать значительно реже. Но ученые не оставляют попыток поглубже изучить такие феномены, устраивая настоящую охоту на молнии. Иногда им это удается и удивительное по красоте явление природы попадает на видео или фото, предоставляя возможность для детального изучения.

Самые редкие, а оттого и плохо изученные виды грозовых разрядов — молнии, которые зарождаются в самых высоких атмосферных слоях. И, по мнению специалистов НАСА, именно они, в случае если получится получить побольше информации, способны дать ключ к разгадке множества тайн об электрической природе, а также «космической погоде» возле нашей планеты.

Высотные молнии – это совершенно новое явление в науке. В первый раз они попали на пленку в 1988 году, причем совершенно случайно: американские ученые проводили тесты новой видеокамеры и сняли кусок грозового неба. Уже позже они обратили внимание на довольно необычную молнию. А в 2011 году за молниями стала охотиться группа ученых при поддержке телевизионщиков из Японии. Для этого у них было два самолета и видеокамеры, обладающие способностью проводить съемку со скоростью до десяти тысяч кадров в минуту. В итоге были получены уникальные данные.

Впрочем, о высотных молниях рассказывали и первые летчики, которые поднимались в небо примерно сто лет назад. Кстати, это явление очень сложно наблюдать как раз из-за того, что такие молнии возникают высоко в атмосфере, поэтому увидеть их можно только на еще большей высоте.

Лишь в начале этого года специалисты получили снимки высотной молнии с высоким разрешением. Его сделали космонавты МКС 30 апреля. На снимке можно увидеть большую вспышку электричества, которая образовалась, как это ни странно, в почти полностью безоблачном небе на ночной стороне Земли. По словам специалистов НАСА, такие молнии называют спрайтами.

Вообще, высотные молнии можно разделить на несколько типов: пятна голубоватого цвета – «спрайты», немного красноватые кольца – «эльфы», струи, бьющие вверх, синеватого оттенка – «джеты». Есть еще и красные струи – «тайгеры».

«Эльфы» напоминают большие слабо освещенные конусы красноватого оттенка, диаметр которых достигает нескольких сотен километров, а высота может доходить до ста километров. Они возникают в верхних частях облака, а срок их «жизни» — максимум, пять миллисекунд. «Джеты» напоминают эльфов, но немного меньше их по размеру, около 70 километров в высоту, и у них синеватый оттенок. «Живут» такие вспышки несколько дольше. «Спрайты» с красноватым оттенком появляются на высотах от пятидесяти километров, и это при том, что обычные грозовые молнии возникают на высотах до 15-16 километров. Длятся такие вспышки до нескольких десятков миллисекунд.

Об «эльфах» и «джетах» науке стало известно через несколько лет после обнаружения «спрайтов» в 1994 году, когда после мощной грозы над Техасом исследователям удалось сфотографировать атмосферные фонтаны голубоватого оттенка.

Впрочем, пока не создано точной классификации высотных молний, так что иногда бывает сложно отделить виды друг от друга. К примеру, считается, что спрайты светятся в области до 90 километров над землей, «эльфы» возникают на высотах от 70 до 90 километров, а «джеты» могут распространяться со скоростями до 100 м/с.

Также известно, что «спрайты» могут появляться группами и выстраиваться по кругу, немного «пританцовывая». Как отмечают ученые из Университета Тель-Авива, это дает пищу для предположения охотникам за НЛО.

По словам одного из сотрудников НАСА Карена Фокса, принято считать, что погодные явления, ежедневно наблюдаемые в природе, и процессы, протекающие в верхних слоях атмосферы, никак не связаны. Однако то, что существуют высотные молнии, доказывает, что эти околоземные сферы связаны. Ученым еще предстоит выяснить, как они обмениваются энергией.

Т ворческий коллектив небесного театра под руководством грандиозного режиссёра – грозовых облаков – разнообразен. Он представлен расположенными внизу короткими голубыми джетами, красно-фиолетовыми спрайтами, находящимися немного выше, и, наконец, красными кольцеобразными эльфами, летающими в самой вышине. А теперь рассмотрим подробнее всю эту разношёрстную публику.

Спрайты над центральной частью Адриатического моря

Голубые джеты – самые таинственные и трудноуловимые артисты в труппе высотных разрядов. За короткий «рост», который, впрочем, достигает 40-километровой длины, их также называют «гномами» . В том слое атмосферы, где рождаются джеты, давление ещё более-менее высокое, поэтому нет ничего удивительного в том, что они голубые. Точно такой цвет имеют и обыкновенные молнии или коронные разряды на линиях электропередачи. Это явление обусловлено свечением молекул азота в ультрафиолетовом диапазоне.

Красные спрайты – Это настоящие знаменитости среди высотных газовых разрядов, поэтому к ним проявляется такой же интерес, как к популярным голливудским актёрам. Каждый день на нашей планете вспыхивает огромное количество спрайтов, и в отличие от джетов их легче заметить невооружённым глазом.

Спрайты представляют собой объёмные атмосферные образования, рождающиеся на высоте 70-90 километров и больше. На такой высоте атмосферный азот даёт красное свечение, а ближе к земле, с ростом давления, он меняет цвет на фиолетовый, синий и белый. Именно поэтому верхняя часть спрайтов имеет однородный тёмно-красный цвет, а та часть, которая находится ниже 70 километров, светится фиолетовым.

Спрайт - редкий вид грозовых разрядов

– венец атмосферных молний. Они появляются в нижней ионосфере на высоте до 100 километров и представляют собой стремительно расширяющиеся красные кольца, диаметр которых достигает 400 километров. Как правило, эльфы возникают в течение нескольких микросекунд после того, как обычная молния из грозового облака разрядится в землю. Узреть «эльфа» невооружённым глазом невозможно по очевидным причинам. Их можно зафиксировать только высокочувствительными приборами.

Интересные факты

  • Спрайты, как и молнии, встречаются не только на Земле, но и на других планетах Солнечной системы. Предположительно именно спрайты были зафиксированы космическими исследовательскими аппаратами во время сильных штормов на Венере, Сатурне и Юпитере.
  • Спрайты и эльфы возникают на такой большой высоте из-за сильной ионизации воздуха галактической пылью. На высоте свыше 80 километров проводимость тока в десять миллиардов раз выше, чем в приземных слоях атмосферы.
    Название «спрайты» происходит от наименования лесных духов, о которых идет речь в комедии Уильяма Шекспира «Сон в летнюю ночь».
  • Спрайты были известны человечеству задолго до 1989 года. Люди высказывали разные гипотезы на счет природы этого явления, в том числе и то, что вспышки света являются инопланетными космическими кораблями. И только после того, как Джону Уинклеру удалось снять кадры спрайтов в ионосфере, ученые доказали, что они имеют электрическое происхождение.
  • Цвет спрайтов, джетов и эльфов разнится от высоты, на которой они появляются. Дело в том, что в околоземной атмосфере сосредоточено больше воздуха, тогда как в верхних слоях ионосферы наблюдается высокая концентрация азота. Воздух горит синим и белым пламенем, азот – красным. По этой причине джеты, которые находятся ниже спрайтов, имеют преимущественно синий цвет, а сами спрайты и, более высокие, эльфы – красноватый оттенок.

Правообладатель иллюстрации ESA/NASA Image caption МКС делает уникальные снимки природных явлений

Грозы с молниями - одно из наиболее зрелищных явлений природы. Однако с поверхности Земли мы можем видеть лишь "верхушку айсберга".

В верхних слоях атмосферы происходят невероятные вещи. Именно их должна изучить новая космическая обсерватория.

В понедельник на Международную космическую станцию (МКС) отправилось оборудование для изучения влияния грозовых штормов на земную атмосферу, так называемый монитор исследования атмосферно-космических взаимодействий (ASIM).

  • 2 апреля ракета-носитель доставила на МКС беспилотник Dragon с 2,6 тоннами груза на борту, в числе которого - провиант для космонавтов и новая техника.

Небесная лаборатория

Находясь на высоте всего 400 км над Землей, МКС предоставляет отличную возможность увидеть изменения в погодных системах.

Система ASIM должна заработать на борту станции уже в этом месяце.


Media playback is unsupported on your device

Грозы с молниями, снятые НАСА с МКС

В частности, на станции часто наблюдают электрические явления в атмосфере, возникающие во время грозы.

Но когда появляется молния, над облаками происходят совершенно иные процессы.

Так называемые переходные люминесцентные явления (Transient Luminous Events, TLEs) ученые обнаружили в 1989 году, совершенно случайно.

Американский профессор из Университета Миннесоты Джон Рэндольф Уинклер в преддверии запуска ракеты проверял работу телекамеры. Неожиданно ученый заметил, что два кадра запечатлели яркие полоски света, находившиеся над отдаленным от них штормовым облаком.

Правообладатель иллюстрации OTD/LIS, NASA Marshall Space Flight Center Image caption Молнии чаще случаются над сушей. Наиболее распространены они в Центральной Африке, Южной Америке и Азии

Это открытие потрясло ученых, в том числе ведущего исследователя команды ASIM Торстена Нойберта, физика из Датского технического университета.

"Это всех нас очень удивило. Как это возможно, что такое существует, а мы об этом до сих пор не знали? Похоже, это явление известно пилотам - есть несколько рассказов очевидцев [подобных процессов - Ред.]", - прокомментировал Нойберт.

Добрую половину века до снимков Уинклера те, кто замечал подобные вспышки (переходные люминесцентные явления (TLE), обычно описывали их как восходящие лучи, или "молнии наоборот" - направленные не вниз, к Земле, а вверх.

Из-за их быстротечной природы и загадочности эти явления назвали "спрайтами" и "эльфами".

  • Название "спрайт" произошло от английского sprite, то есть "фея", "эльф". С точки зрения физики, это вид электрических разрядов холодной плазмы, бьющей в мезосфере и термосфере. В русскоязычной литературе их иногда также называют "призраками" и "красными призраками" - Ред.

Однако, несмотря на уменьшительно-ласкательное название, которым прозвали феномен, на самом деле вспышки эти совсем не маленькие: они простираются в атмосфере на десятки километров.

Красные призраки, эльфы и голубые струи

Итак, как же образуются эти явления?

"Они несколько отличаются от молний, - рассказывает Би-би-си физик Торстен Нойберт. - Это пульсация электрического поля, движущаяся вверх. В месте, где атмосфера становится тонкой, в поле может образоваться электрический разряд. В таком случае мы говорим о спрайте".

Спрайты, или красные призраки, возникают через миллисекунды после мощного удара молнии.

Эльфы, в свою очередь, образуются вследствие уже не электрической, а электромагнитной пульсации, вызванной ударом молнии. Мгновенный, подобный ауре, ареол эльфа невозможно заметить невооруженным глазом. Возникая в ионосфере, он длится менее одной миллисекунды.

Но, несмотря на свою неуловимость, природу эльфов удалось на удивление хорошо изучить, считает Мартин Фуллекруг из Университета Бата в Великобритании.

Это наиболее распространённые вспышки TLE, возникающие, по мнению ученых, вдвое чаще, чем спрайты.

Правообладатель иллюстрации Jason Ahrns Image caption Спрайты, или красные призраки, могут длиться несколько миллисекунд

Наименее изучены так называемые голубые струи (англ. Blue jets - Ред), или джеты. Это восходящие электрические разряды, начинающиеся у вершин облаков.

"Джеты не слишком хорошо изучены, поскольку они едва заметны. Чаще всего они голубого цвета. Кроме того, они не всегда связаны с молнией. Они появляются неожиданно и очень загадочны", - уточняет Фуллекруг.

Эльфов обычно замечают над теплыми водами океанов, красные призраки (или спрайты) чаще появляются над сушей.

Лучше всего их наблюдать из Северной Америки, Демократической Республики Конго и Южной Африки.

Но их можно видеть и из других мест.

Обычная летняя гроза в Великобритании, как правило, простирается над территорией протяженностью около 10 километров. Красные призраки возникают над мезомасштабными конвективными системами (МКС) - штормовыми облаками, покрывающими в 10 раз большее расстояние.

  • Мезомасштабными конвективными систем ами (или комплексами) метеорологи называют большие скопления кучеряво-дождевых облаков с почти круговой формой, возникающие в тропиках и в умеренных широтах. - Ред.

"В Британии время от времени тоже случаются такие грозы, - уточняет доктор Фуллекруг. - Сейчас мы исследуем одну из них, произошедшую в мае прошлого года. Во время нее образовалась прекрасная череда спрайтов" [над графством Корнуолл на юго-западе Англии - Ред.].

Тогда красных призраков удалось запечатлеть наблюдателям метеоритов, камеры которых были настроены таким образом, чтобы можно было видеть след падающих звезд.

Космические охотники за грозами

Главная задача ASIM - изучить физику переходных люминесцентных явлений (TLE) и свойства гроз, которые их порождают.

В составе спецоборудования - две камеры, способные делать 12 фотографий в секунду, рентген и детектор гамма-излучений.

Эта техника позволит международной команде ученых, для многих из которых это исследование является кульминацией десятков лет работы, определить, где именно в облаках возникают красные призраки и голубые стрелы.

Правообладатель иллюстрации Science Photo Library Image caption Спрайты возникают над вершинами облаков

Благодаря помощи Европейского космического агентства, миссия ASIM запланирована как минимум на два года.

За это время ученые надеются исследовать по одной вспышке TLE в день, хотя в мире они происходят, по существующим оценкам, ежеминутно.

Для физика Нойберта это время будет невероятно захватывающим.

"Мы ведь толком не знаем, как устроена молния. Она возникает так быстро, и так опасна… Добраться до физических процессов, которые происходят внутри нее, довольно сложно", - говорит ученый.

В тонких верхних слоях атмосферы вспышки TLE шире, и лучше поддаются исследованиям.

При этом сам Нойберт признается: "Для меня это окно, позволяющее заглянуть внутрь молнии".

Было также замечено, что металлизированные (в те годы - в основном, позолоченные) купола реже поражаются молнией.

Большой толчок в изучении молнии дало развитие мореплавания. Во-первых, мореплаватели столкнулись с грозами невиданной на суше силы, во-вторых, обнаружили, что грозы неравномерно распределены по географическим широтам, в-третьих, заметили, что при недалеком ударе молнии стрелка компаса испытывает сильные возмущения, в-четвертых, четко связали появление огней святого эльма и надвигающейся грозы. Кроме того, именно мореплаватели первыми обратили внимание, что перед грозой возникали явления, похожие на те, что возникают при электризации стекла или шерсти от трения.

Развитие физики в XVII - XVIII веках позволило выдвинуть гипотезу о связи молнии и электричества. В частности, такого представления придерживался М.В. Ломоносов . Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина , по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли .

К началу XIX века большинство ученых уже не сомневались в электрической природе молнии (хотя существовали и альтернативные гипотезы, например, химическая) и основными вопросами исследования стали механизм выработки электричества в грозовых облаках и параметры грозового разряда.

Молния 1882 (с) фотограф: Уильям Н. Дженнингс, Си. 1882

В конце XX века при изучении молнии было открыто новое физическое явление - пробой на убегающих электронах.

Для изучения физики молнии применяются методы наблюдения со спутников.

Виды

Наиболее часто молния возникает в кучево-дождевых облаках , тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях , торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам , так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках , при этом молнии могут проходить в самих облаках - внутриоблачные молнии , а могут ударять в землю - молния облако-земля . Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Молнии облако-земля

Процесс развития такой молнии состоит из нескольких стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация , создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения - частиц с энергиями 10 12 -10 15 эВ , формирующих широкий атмосферный ливень с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях .

Запуск молнии происходит от высокоэнергетических частиц, вызывающих пробой на убегающих электронах («спусковым крючком» процесса при этом являются космические лучи) . Таким образом возникают электронные лавины , переходящие в нити электрических разрядов - стримеры , представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии .

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример , соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода .

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии , характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера , и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 20000-30000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженной, поэтому принято считать, что разряд молнии происходит от облака по направлению к земле (сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 секунду. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Полёт из Калькутты в Мумбаи

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растёт по мере смещения к экватору , меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе . Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением , так называемыми атмосфериками .

Вероятность поражения молнией наземного объекта растёт по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие молниеотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках .

В верхней атмосфере

Молнии и электрические разряды в верхних слоях атмосферы

Вспышки в верхних слоях атмосферы: стратосфере , мезосфере и термосфере , направленные вверх, вниз и горизонтально, очень слабо изучены. Они подразделяются на спрайты, джеты и эльфы . Окраска вспышек и их форма зависит от высоты, на которой они происходят. В отличие от наблюдаемых на Земле молний, эти вспышки имеют яркий цвет, обычно красный или синий, и покрывают большие пространства в верхних слоях атмосферы, а иногда простираются до границы с космосом .

«Эльфы»

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), продолжительность джетов больше, чем у эльфов .

Спрайты

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало .

Частота

Частота молний на квадратный километр в год по данным спутникового наблюдения за 1995-2003 годы

Чаще всего молнии возникают в тропиках .

Местом, где молнии встречаются чаще всего, является деревня Кифука в горах на востоке Демократической Республики Конго . Там в среднем отмечается 158 ударов молний на квадратный километр в год . Также молнии очень часты на Кататумбо в Венесуэле , в Сингапуре , городе Терезина на севере Бразилии и в «Аллее молний» в центральной Флориде .

Взаимодействие с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год . 75 % этих молний ударяет между облаками или внутри облаков, а 25 % - в землю .

Самые мощные молнии вызывают рождение фульгуритов .

Зачастую молния, попадая в деревья и трансформаторные установки на железной дороге, вызывает их возгорание. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

Ударная волна

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны , опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны :

  • на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа, что сопоставимо с ударной волной, создаваемой тактическим ядерным оружием,
  • на расстоянии 0,5 м - 0,025 МПа, что сопоставимо с ударной волной, вызванной взрывом артиллерийской мины и вызывает разрушение непрочных строительных конструкций и травмы человека,
  • на расстоянии 5 м - 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну - гром .

Люди, животные и молния

Молнии - серьёзная угроза для жизни людей и животных. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по каналу наименьшего электрического сопротивления, что в общем случае соответствует кратчайшему пути [ ] «грозовое облако - земля».

Поражение обычной линейной молнией внутри здания невозможно. Однако бытует мнение, что так называемая шаровая молния может проникать внутрь здания через щели и открытые окна.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электрическим током. Жертва теряет сознание , падает, могут отмечаться судороги , часто останавливается дыхание и сердцебиение . На теле обычно можно обнаружить «метки тока» , места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии , древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1-2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

Пострадавший от удара молнией нуждается в госпитализации, так как подвержен риску расстройств электрической активности сердца. До приезда квалифицированного медика ему может быть оказана первая помощь . В случае остановки дыхания показано проведение реанимации , в более лёгких случаях помощь зависит от состояния и симптомов.

По одним данным, каждый год в мире от удара молнии погибают 24 000 человек и около 240 000 получают травмы . По другим оценкам, в год в мире от удара молнии погибает 6000 человек .

Вероятность, что житель США получит удар молнией в текущем году, оценивается как 1 из 960 000, вероятность того, что он когда-либо в жизни (при продолжительности жизни 80 лет) получит удар молнией, составляет 1 из 12 000 .

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления , с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами , и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине опасно прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности .

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства .

Молния и электрооборудование

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение , вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. В связи с этим аварии и пожары на сложном технологическом оборудовании могут возникать не мгновенно, а в период до восьми часов после попадания молнии. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования такими как разрядники , нелинейные ограничители перенапряжения, длинноискровые разрядники. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы . Для электронных устройств представляет опасность также и электромагнитный импульс , создаваемый молнией, который может повреждать оборудование на расстоянии до нескольких километров от места удара молнии. Достаточно уязвимыми к электромагнитному импульсу молнии являются локальные вычислительные сети.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая ёмкость самолёта, находящегося в воздухе, невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлёте и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Известные авиационные катастрофы, вызванные молнией:

  • Катастрофа Ил-12 под Зугдиди (1953 год) - 18 погибших, в том числе Народная артистка Грузинской ССР и Заслуженная артистка РСФСР Нато Вачнадзе
  • Катастрофа L-1649 под Миланом (1959 год) - 69 погибших (официально - 68)
  • Катастрофа Boeing 707 в Элктоне (1963 год) - 81 погибший. Занесена в книгу рекордов Гиннесса , как наибольшее число погибших из-за удара молнии. После неё в правила по созданию новых самолётов внесли пункт об испытаниях на попадания молний.

Молния и корабли

Молния также представляет очень большую угрозу для надводных кораблей ввиду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряжённости электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надёжно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии, а молниеотводы гарантируют защиту людей, находящихся на палубах. Поэтому для современных надводных кораблей молния не опасна.

Деятельность человека, вызывающая молнию

Защита от молний

Техника безопасности при грозе

Большинство гроз обычно происходят без каких либо существенных последствий, тем не менее, необходимо соблюдать ряд правил безопасности:

  • Следить за движением грозового облака, оценивая расстояния для места грозовой активности по времени запаздывания грома относительно молнии. Если расстояние уменьшается до 3 километров (запаздывание менее 10 секунд) значит существует риск близкого удара молнии и необходимо незамедлительно принять меры по защите себя и имущества.
  • На открытой местности (степь, тундра, большие пляжи) необходимо по возможности переместиться в пониженные места (овраги, балки, складки местности), но не приближаться при этом к водоему.
  • В лесу следует переместиться на участок с невысокими молодыми деревьями.
  • В населенном пункте, по возможности - укрыться в помещении.
  • В горах следует искать укрытие в распадках, расщелинах (однако надо учитывать возможность возникновения в них склонового стока при сильном ливне, сопровождающем грозу) под устойчивыми нависающими камнями, в пещерах.
  • При движении на автомобиле следует остановиться (если это позволяет дорожная ситуация и не запрещено правилами), закрыть окна, выключить двигатель. Движение во время близкой грозы очень опасно, поскольку водитель может быть ослеплен яркой вспышкой близкого разряда, а электронные устройства управления современного автомобиля - дать сбой.
  • При нахождении на водоеме (река, озеро) на лодках, плотах, байдарках необходимо как можно скорее направляться к берегу, острову, косе или дамбе. Находиться в воде во время грозы очень опасно, поэтому нужно выйти на берег.
  • Находясь в помещении следует закрыть окна и отойти от них на расстояние хотя 1 метр, прекратить телевизионный и радиоприем на внешнюю антенну, отключить электронные приборы, питаемые от сети.
  • Очень опасно во время грозы находиться возле следующих объектов: отдельно стоящие деревья, опоры линии электропередач, освещения, связи и контактной сети, флагштоки, различные архитектурные столбы, колонны, водонапорные башни, электрические подстанции (здесь дополнительную опасность создает разряд между токоведущими шинами, который может быть инициирован ионизацией воздуха грозовым разрядом), крыши и балконы верхних этажей возвышающихся над городской застройкой зданий.
  • Достаточно безопасными и пригодными для укрытия местами являются: водопропускные трубы автомобильных и железных дорог (являются также и неплохой защитой и от дождя), места под пролетными строениями мостов, путепроводов, эстакад, навесы автозаправочных станций.
  • Достаточно надежной защитой от молнии может служить любое закрытое транспортное средство (автомобиль, автобус, железнодорожный вагон). Однако транспортных средств с тентовой крышей стоит остерегаться.
  • Если гроза застигла в месте, где нет никаких укрытий, следует сесть на корточки, снизив таким образом свою высоту над уровнем земли, но ни в коем случае не ложиться на землю и не опираться руками (чтобы не попасть под действие шагового напряжения), накрыть голову и лицо любым подручным укрытием (капюшон, пакет и т.п.), чтобы защитить их от ожога ультрафиолетовым излучением от возможного близкого разряда. Велосипедистам и мотоциклистам следует отойти от своей техники на расстояние 10-15 м.

Наряду с молнией в эпицентре грозовой активности опасность представляют также нисходящий поток воздуха, создающий порывы шквалистого ветра и интенсивные осадки, в том числе - град от которых тоже требуется защита.

Грозовой фронт проходит достаточно быстро, поэтому особые меры безопасности требуются в течение сравнительно небольшого интервала времени, в умеренном климате обычно не более 3-5 минут.

Защита технических объектов

В древнегреческих мифах

См. также

Примечания

  1. Кошкин Н. И., Ширкевич М. Г. Справочник по элементарной физике. 5-е изд. М: Наука, 1972 г. С. 138
  2. Ученые назвали самую протяженную и самую продолжительную молнии
  3. B. Hariharan, A. Chandra, S. R. Dugad, S. K. Gupta, P. Jagadeesan, A. Jain, P. K. Mohanty, S. D. Morris, P. K. Nayak, P. S. Rakshe, K. Ramesh, B. S. Rao, L. V. Reddy, M. Zuberi, Y. Hayashi, S. Kawakami, S. Ahmad, H. Kojima, A. Oshima, S. Shibata, Y. Muraki, and K. Tanaka (GRAPES-3 Collaboration) Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment // Phys. Rev. Lett. , 122, 105101 - Published 15 March 2019
  4. Красные Эльфы и Синие Джеты
  5. Гуревич А. В., Зыбин К. П. «Пробой на убегающих электронах и электрические разряды во время грозы » // УФН , 171, 1177-1199, (2001)
  6. Иудин Д. И., Давыденко С. С., Готлиб В. М., Долгоносов М. С., Зелёный Л. М. «Физика молнии: новые подходы к моделированию и перспективы спутниковых наблюдений » // УФН , 188, 850-864, (2018)
  7. Ермаков В. И., Стожков Ю. И. Физика грозовых облаков // , РАН, М., 2004 г. :37
  8. В возникновении молний обвинили космические лучи // Lenta.Ru, 09.02.2009
  9. Александр Костинский. «Молниеносная жизнь эльфов и гномов» Вокруг света , № 12, 2009.

20 лет назад, в ночь с 5 по 6 июля 1989 года, в истории изучения планеты Земля произошло важное событие. Джон Рандольф Уинклер, отставной профессор, 73-летний ветеран NASA, направил на грозовые облака высокочувствительную видеокамеру, а потом, просматривая запись кадр за кадром, обнаружил две яркие вспышки, которые в отличие от молний шли не вниз, к земле, а вверх, к ионосфере. Так были открыты спрайты - самые крупные из высотных разрядов в атмосфере Земли. Они наглядно подтвердили существование на нашей планете глобальной электрической цепи и дали новые возможности для ее исследования.

Разряды, зарегистрированные Джоном Уинклером, стартовали с высоты 14 километров, а их размеры составляли более 20 километров. Механизм, приводящий к их появлению, был неясен, и требовалась большая научная смелость, чтобы объявить об электрическом разряде, поднимающемся от границ тропосферы на такую высоту.


Чтобы получить более убедительные доказательства, воодушевленный Уинклер дождался, когда Миннесоту накрыл ураган «Хьюго» и в ночь с 22 на 23 сентября снова записал на видеокамеру много подобных высотных разрядов над грозовыми облаками. Интересно, что формально он вел это исследование как любитель, поскольку оно не входило ни в какие программы научных работ. Но Уинклер, конечно, не был любителем и действовал решительно, как человек, четко осознающий свою миссию. От прошлой работы в NASA у него осталась неисправная высокоскоростная видеокамера. Он уговорил декана физического факультета Университета Миннесоты выделить на ее ремонт 7000 долларов и установил у себя дома оборудование для анализа записей.


Уникальные кадры гигантских разрядов испугали Уинклера не меньше, чем обрадовали. А что если такой разряд ударит в летательный аппарат? И ученый обратился к коллегам из NASA с предупреждением. Те засомневались. Что за разряды? Но из уважения к прошлому Уинклера взялись просмотреть записи, сделанные во время полетов космических челноков. И они не поверили своим глазам: на пленках обнаружилось больше десятка подобных разрядов. Уинклер попал в точку. Будучи профессионалом, он довел дело до логического конца - публикаций в ведущих научных журналах Geophysical Research Letters (1989) и Science (1990).
Статьи буквально вызвали шок у специалистов по астрономии, атмосферному электричеству, радиофизике, атмосферной акустике, физике газового разряда и аэрокосмической безопасности. После этих публикаций в NASA уже не могли отмахнуться от возможной угрозы космическим кораблям и начали развернутое исследование высотных разрядов. За три года подготовки к этой работе с Уинклером не раз советовались, но в саму программу так и не включили.


В первую же ночь наблюдений, 7 июля 1993 года, на научной станции вблизи Форт-Коллинса (штат Колорадо) удивленные исследователи зафиксировали больше 240 высотных разрядов. На следующую ночь, чтобы исключить ошибку в определении высоты, была задействована специализированная летающая лаборатория на борту самолета DC-8. Результаты превзошли все ожидания: огромные вспышки были обнаружены на высотах не менее 50-60 километров. В честь непоседливого Пака из шекспировского «Сна в летнюю ночь» им дали название спрайтов, то есть духов воздуха. Естественно, встал вопрос: почему об этих разрядах ничего не знали раньше, если каждый мощный грозовой фронт порождает их десятками?


Анализ литературы показал, что на протяжении сотни лет многие люди видели над облаками не обычные и очень большие разряды. Их называли ракетными молниями, облачно-стратосферными разрядами, восходящими молниями и даже молниями «облако - космос». Но в отсутствие надежных доказательств странные сообщения очевидцев просто игнорировались. Отмахнулись даже от такого известного и заслуженного специалиста в области атмосферного электричества, как нобелевский лауреат Чарлз Томсон Вильсон, который еще в 1956 году писал в своей статье о подобном явлении. Понадобились чутье, опыт, упорство и бесстрашие профессора Джона Уинклера, чтобы «этого не может быть» очень быстро превратилось в «да кто же этого не знает». Теперь на многочисленных роликах в Интернете можно в деталях рассмотреть эти разряды.


Джон Уинклер умер в 2001 году. Больше работ по высотным разрядам он не делал, хотя с трудом верится, что не хотел - после такого-то успеха. На его публикацию в Science исправно ссылались, но в проекты, видимо, не включали. В некрологе, написанном коллегами, сквозит обида за него. А зря. Каждый день Джону Рандольфу Уинклеру салютуют красно-фиолетовые спрайты, ведь он научил людей их видеть.


Вскоре исследователи обнаружили целое световое шоу, разворачивающееся в верхних слоях атмосферы над свинцовыми грозовыми фронтами. Главные актеры в нем (в порядке снизу вверх): голубые джеты, которых иногда называют гномами (раз уж они внизу), посередине красно-фиолетовые спрайты и гало, а над ними красноватые кольца - парящие в вышине эльфы. Но, конечно, не надо забывать режиссера, стоящего за грандиозным спектаклем, - это всем известные грозовые облака и молнии. Вообще-то еще недавно труппа была многочисленнее, но исследователи постепенно избавились от духов, медуз (некоторые виды спрайтов) и прочей звучной «живности».


Надо заметить, что упражнения в красивых названиях не просто забавы в стиле «физики шутят», как может показаться на первый взгляд. Как и в шоу-бизнесе, в науке продвижение идей и направлений играет важную роль, ведь и здесь, и там идет борьба за ресурсы. Область науки, которая на слуху у публики, обычно финансируется более щедро. Вспомните хотя бы нанотехнологии, о которых все говорят, но никто толком не может объяснить, что это такое и почему туда нужно направить столько средств. Но вернемся к нашему спектаклю и подробнее представим всех почтеннейшей публике.

Эльфы - самые эфемерные и короткоживущие в семействе высотных разрядов. Эти светящиеся красно-фиолетовые кольца возникают в нижней ионосфере на высотах 80-100 километров. Меньше чем за миллисекунду свечение, возникнув в центре, расширяется до 300-400 километров и угасает. Изучены эльфы не очень подробно, вероятно, потому, что не вызывают особых споров и не сулят серьезного продвижения в понимании природы атмосферных разрядов. Они рождаются через три десятитысячных секунды (300 микросекунд) после сильной молнии, ударившей из грозового облака в землю. Ее ствол становится «передающей антенной», от которой со скоростью света стартует мощная сферическая электромагнитная волна очень низкой частоты. За 300 микросекунд она как раз добирается до высоты 100 километров, где возбуждает красно-фиолетовое свечение молекул азота. Чем дальше уходит волна, тем шире становится кольцо, пока не угасает с удалением от источника.


Голубые джеты, или гномы, - самые загадочные, редкие и трудные для наблюдения существа в ансамбле новых высотных разрядов. Выглядит гном, как голубой узкий перевернутый конус, стартующий с верхнего края грозового облака и достигающий иногда 40-километровой высоты. Скорость распространения голубых джетов - от 10 до 100 км/с. Но самое странное, что их появление не всегда связано с видимыми разрядами молний. На высотах, откуда стартуют джеты, давление еще относительно высокое, и неудивительно, что они голубые. Так светят молния, коронный разряд на проводах, искровой разряд и даже пламя высокой температуры. Это тоже свечение молекул азота, но не в красно-фиолетовой полосе, как в случае эльфов, а в ультрафиолетово-голубой.


Кроме обычных джетов с верхней кромки облака иногда срываются вверх так называемые голубые стартеры. Они не поднимаются выше 30 километров. Одни ученые полагают, что это просто разряд молнии, направленный вверх, в область, где давление быстро падает, и потому стартеры расширяются гораздо сильнее обычных молний. Другие считают их недоразвитыми джетами.

Но самый интересный тип голубых джетов назвали гигантскими джетами. Стартуя не очень далеко от поверхности Земли, они достигают 90-километровой высоты. Интерес геофизиков к гигантским джетам под стать их размерам, ведь эти разряды совершают «беспосадочный перелет» из тропосферы прямо в ионосферу. Однако наблюдаются они чрезвычайно редко, и надежно их регистрировали не более дюжины раз. При этом живут они доли секунды, что, в принципе, позволяет заметить их простым глазом.


Теория джетов делает лишь первые шаги. Пока неясно даже, на что похоже это явление. Если по своей природе они близки к светящемуся каналу молнии в стадии развития, то становится понятно, почему рождение джета не связано с молниями: он сам - молния. Но, возможно, более близкой аналогией является разряд внутри грозового облака, который питает энергией канал молнии. В этом случае понять природу джетов будет еще труднее, поскольку теория таких разрядов находится в начальной стадии развития.


Красным спрайтам посвящено наибольшее число наблюдений и публикаций. Это настоящие поп-звезды среди высотных атмосферных разрядов. Иногда кажется, что интерес к ним столь же перегрет, как и к популярным певцам. Чем же они заслужили такое внимание? Дело, вероятно, в том, что их несложно наблюдать (если, конечно, знать о том, что это возможно). Каждые сутки на земном шаре рождаются десятки тысяч спрайтов, и просто удивительно, что их так долго не замечали.

Спрайты - очень яркие объемные вспышки, возникающие на высоте 70-90 километров и спускающиеся вниз на 30-40 километров, а иногда и больше. В верхней части их ширина достигает порой десятков километров. Это самые объемные из высотных разрядов. Как и эльфы, спрайты состоят в прямом родстве с молниями, но не со всеми. Большинство молний бьет из той части облака, которая заряжена отрицательно (она в среднем расположена ближе к земле). Но 10% молний, достигающих земли, стартуют из области положительного заряда, а так как основная область расположения положительного заряда больше, чем отрицательного, то положительные молнии мощнее. Считается, что именно такие мощные разряды порождают спрайты, вспыхивающие в мезосфере примерно через сотую долю секунды после разряда класса «облако - земля».


Красно-фиолетовый цвет спрайтов, как и у эльфов, связан с атмосферным азотом. Верхняя часть спрайта светится однородно, а вот ниже 70 километров разряд как будто сплетается из каналов толщиной в сотни метров. Их структура - самая интересная для изучения особенности спрайтов. Каналы называют стримерами по аналогии с хорошо известными разрядами-иголочками у острых краев предметов в грозовую погоду и у высоковольтных проводов. Правда, толщина земных стримеров порядка миллиметра, а в спрайтах они в 100 000 раз больше. Пока неясно, почему диаметр стримеров так сильно увеличивается - гораздо быстрее, чем падает с высотой давление воздуха.


Гало - это однородное красновато-фиолетовое свечение на высоте около 80 километров. Причина разряда, видимо, та же, что и у верхней части спрайтов, но в отличие от них гало всегда возникает прямо над вспышкой молнии. Спрайты же позволяют себе вольность находиться где-нибудь сбоку. Существует, видимо, некая связь между спрайтами и гало, но ее механизм пока неясен. Они появляются то вместе, то порознь. Возможно, гало и есть верхняя часть спрайтов, когда напряженности электрического поля не хватило, чтобы разряд распространился в более плотный нижний воздух.


Согласно Географической карте гроз, наибольшими шансами увидеть спрайты обладают жители экваториальной и тропической зоны Земного шара. Именно в этой области случается до 78% всех гроз. Жители России также могут наблюдать спрайты. Пик гроз в нашей стране приходится на июль-август месяц. Именно в это время любители астрономии могут увидеть такое красивое явление как спрайты.
Согласно американскому Справочнику наблюдения за спрайтами и гигантскими джетами, для того, чтобы увидеть спрайты, наблюдатель должен находиться на расстоянии примерно 100 километров от эпицентра грозы. Для того чтобы наблюдать джеты, ему следует навести оптику на 30-35 градусов по направлению к грозовой области. Тогда он сможет наблюдать часть ионосферы на высоте до 50 километров, именно в этой области чаще всего появляются джеты. Чтобы наблюдать спрайты, следует навести бинокль на угол 45-50 градусов, что будет соответствовать области неба на высоте около 80 км – месту, где рождаются спрайты.

Для лучшего и более детального изучения спрайтов, джетов, а тем более эльфов, наблюдателю лучше воспользоваться специальной киноаппаратурой, которая позволит детально зафиксировать небесные вспышки. Наиболее удачное время для охоты за спрайтами в России – период с середины июля по середину августа.Интересные факты

Спрайты, как и молнии, встречаются не только на Земле, но и на других планетах Солнечной системы. Предположительно именно спрайты были зафиксированы космическими исследовательскими аппаратами во время сильных штормов на Венере, Сатурне и Юпитере.

Спрайты и эльфы возникают на такой большой высоте из-за сильной ионизации воздуха галактической пылью. На высоте свыше 80 километров проводимость тока в десять миллиардов раз выше, чем в приземных слоях атмосферы.

Название «спрайты» происходит от наименования лесных духов, о которых идет речь в комедии Уильяма Шекспира «Сон в летнюю ночь».


Спрайты были известны человечеству задолго до 1989 года. Люди высказывали разные гипотезы на счет природы этого явления, в том числе и то, что вспышки света являются инопланетными космическими кораблями. И только после того, как Джону Уинклеру удалось снять кадры спрайтов в ионосфере, ученые доказали, что они имеют электрическое происхождение.

Цвет спрайтов, джетов и эльфов разнится от высоты, на которой они появляются. Дело в том, что в околоземной атмосфере сосредоточено больше воздуха, тогда как в верхних слоях ионосферы наблюдается высокая концентрация азота. Воздух горит синим и белым пламенем, азот – красным. По этой причине джеты, которые находятся ниже спрайтов, имеют преимущественно синий цвет, а сами спрайты и, более высокие, эльфы – красноватый оттенок.

Выбор редакции
В зависимости от вида штрафа, в 1С 8.3 применяется различный порядок отражения в учете. Рассмотрим наиболее распространённые ситуации. На...

1. Для начала необходимо отобрать початки кукурузы. Они должны быть одинакового размера и не очень крупные. Именно поэтому лучше отдать...

Скумбрия тушеная — общие принципы приготовления Тушеная скумбрия – простое в приготовлении, вкусное и очень полезное блюдо. Для него не...

Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
С наступлением поста многие из нас задаются вполне обоснованными вопросами. Например, таким: «Можно ли есть в пост морепродукты?» Здесь...
Карп – один из символов водной стихии. Кроме того, эта рыба во многих культурах наделяется особыми свойствами. К примеру, на востоке...
Две недели назад 36-летняя Анастасия Мыскина объявила о расставании с гражданским мужем, политиком и бизнесменом Сергеем Мамедовым....
Почти у всех людей, изучающих английский язык, возникают трудности при изучении грамматики. И речь идет не только о понимании правил...