Исследование функции онлайн калькулятор. Исследование функции методами дифференциального исчисления. Необходимое условие для точек перегиба


Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции . Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы .

Исследование функции я привык разбивать на 5-6 пунктов:

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание : напоминаю, что более высокого порядка роста , чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях .

Таким образом, функция не ограничена сверху и не ограничена снизу . Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции : – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы .

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:


ог Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов .

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:


Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :


График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Пример 2

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Пример 3

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение : первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения : .


, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу .

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Вывод №1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод №2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод №3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу №1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

– критическая точка.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом №2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

Значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом №3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:


В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Пример 4

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Пример 5

Провести полное исследование функции и построить её график.

Решение : понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

Значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя :

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

4) Возрастание, убывание, экстремумы функции.


– критические точки.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:


Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :


График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

РЕФЕРАТ

«Полное исследование функции и построение её графика».

ВВЕДЕНИЕ

Изучение свойств функции и построение ее графика являются одним из самых замечательных приложений производной. Этот способ исследования функции неоднократно подвергался тщательному анализу. Основная причина состоит в том, что в приложениях математики приходилось иметь дело с более и более сложными функциями, появляющимися при изучении новых явлений. Появились исключения из разработанных математикой правил, появились случаи, когда вообще созданные правила не годились, появились функции, не имеющие ни в одной точке производной.

Целью изучения курса алгебры и начал анализа в 10-11 классах является систематическое изучение функций, раскрытие прикладного значения общих методов математики, связанных с исследованием функций.

Развитие функциональных представлений в курсе изучения алгебры и начал анализа на старшей ступени обучения помогает старшеклассникам получить наглядные представления о непрерывности и разрывах функций, узнать о непрерывности любой элементарной функции на области ее применения, научиться строить их графики и обобщить сведения об основных элементарных функциях и осознать их роль в изучении явлений реальной действительности, в человеческой практики.

    Возрастание и убывание функции

Решение различных задач из области математики, физики и техники приводит к установлению функциональной зависимости между участвующими в данном явлении переменными величинами.

Если такую функциональную зависимость можно выразить аналитически, то есть в виде одной или нескольких формул, то появляется возможность исследовать ее средствами математического анализа.

Имеется в виду возможность выяснения поведения функции при изменении той или иной переменной величины (где функция возрастает, где убывает, где достигает максимума и т.д.).

Применение дифференциального исчисления к исследованию функции опирается на весьма простую связь, существующую между поведением функции и свойствами ее производной, прежде всего ее первой и второй производной.

Рассмотрим, как можно находить интервалы возрастания или убывания функции, то есть интервалы ее монотонности. Исходя из определения монотонно убывающей и возрастающей функции, можно сформулировать теоремы, позволяющие связать значение первой производной данной функции с характером ее монотонности.

Теорема 1.1 . Если функция y = f ( x ) , дифференцируемая на интервале ( a , b ) , монотонно возрастает на этом интервале, то в любой его точке
( x ) >0; если она монотонно убывает, то в любой точке интервала ( x )<0.

Доказательство. Пусть функция y = f ( x ) монотонно возрастает на ( a , b ) , значит, для любого достаточно малого > 0 выполняется неравенство:

f ( x - ) < f ( x ) < f ( x + ) (рис. 1.1).

Рис. 1.1

Рассмотрим предел

.

Если > 0, то > 0, если < 0, то

< 0.

В обоих случаях выражение под знаком предела положительно, значит, и предел положителен, то есть ( x )>0 , что и требовалось доказать. Аналогично доказывается и вторая часть теоремы, связанная с монотонным убыванием функции.

Теорема 1.2 . Если функция y = f ( x ) , непрерывна на отрезке [ a , b ] и дифференцируема во всех его внутренних точках, и, кроме того, ( x ) >0 для любого x ϵ ( a , b ) , то данная функция монотонно возрастает на ( a , b ) ; если

( x ) <0 для любого ( a , b ), то данная функция монотонно убывает на ( a , b ) .

Доказательство. Возьмем ϵ ( a , b ) и ϵ ( a , b ) , причем < . По теореме Лагранжа

( c ) = .

Но ( c )>0 и > 0, значит, ( > 0, то есть

(. Полученный результат указывает на монотонное возрастание функции, что и требовалось доказать. Аналогично доказывается вторая часть теоремы.

    Экстремумы функции

При исследовании поведения функции особую роль играют точки, которые отделяют друг от друга интервалы монотонного возрастания от интервалов ее монотонного убывания.

Определение 2.1 . Точка называется точкой максимума функции

y = f ( x ) , если для любого, сколь угодно малого , ( < 0 , а точка называется точкой минимума, если ( > 0.

Точки минимума и максимума имеют общее название точек экстремума. У кусочно-монотонной функции таких точек конечное число на конечном интервале (рис. 2.1).

Рис. 2.1

Теорема 2.1 (необходимое условие существования экстремума) . Если дифференцируемая на интервале ( a , b ) функция имеет в точке из этого интервала максимум, то ее производная в этой точке равна нулю. То же самое можно сказать и о точке минимума .

Доказательство этой теоремы следует из теоремы Ролля, в которой было показано, что в точках минимума или максимума = 0, и касательная, проведенная к графику функции в этих точках, параллельна оси OX .

Из теоремы 2.1 вытекает, что если функция y = f ( x ) имеет производную во всех точках, то она может достигать экстремума в тех точках, где = 0.

Однако данное условие не является достаточным, так как существуют функции, у которых указанное условие выполняется, но экстремума нет. Например, у функции y = в точке x = 0 производная равна нулю, однако экстремума в этой точке нет. Кроме того, экстремум может быть в тех точках, где производная не существует. Например, у функции y = | x | есть минимум в точке x = 0 , хотя производная в этой точке не существует.

Определение 2.2 . Точки, в которых производная функции обращается в ноль или терпит разрыв, называются критическими точками данной функции .

Следовательно, теоремы 2.1 недостаточно для определения экстремальных точек.

Теорема 2.2 (достаточное условие существования экстремума) . Пусть функция y = f ( x ) непрерывна на интервале ( a , b ) , который содержит ее критическую точку , и дифференцируема во всех точках этого интервала, за исключением, быть может, самой точки . Тогда, если при переходе этой точки слева направо знак производной меняется с плюса на минус, то это точка максимума, и, наоборот, с минуса на плюс – точка минимума .

Доказательство. Если производная функции меняет свой знак при переходе точки слева направо с плюса на минус, то функция переходит от возрастания к убыванию, то есть достигает в точке своего максимума и наоборот.

Из вышесказанного следует схема исследования функции на экстремум:

1) находят область определения функции;

2) вычисляют производную;

3) находят критические точки;

4) по изменению знака первой производной определяют их характер.

Не следует путать задачу исследования функции на экстремум с задачей определения минимального и максимального значения функции на отрезке. Во втором случае необходимо найти не только экстремальные точки на отрезке, но и сравнить их со значением функции на его концах.

    Интервалы выпуклости и вогнутости функции

Еще одной характеристикой графика функции, которую можно определять с помощью производной, является его выпуклость или вогнутость.

Определение 3.1 . Функция y = f ( x ) называется выпуклой на промежутке ( a , b ) , если ее график расположен ниже любой касательной, проведенной к нему на данном промежутке, и наоборот, называется вогнутой, если ее график окажется выше любой касательной, проведенной к нему на данном промежутке .

Докажем теорему, позволяющую определять интервалы выпуклости и вогнутости функции.

Теорема 3.1 . Если во всех точках интервала ( a , b ) вторая производная функции ( x ) непрерывна и отрицательна, то функция y = f ( x ) выпукла и наоборот, если вторая производная непрерывна и положительна, то функция вогнута .

Доказательство проведем для интервала выпуклости функции. Возьмем произвольную точку ϵ ( a , b ) и проведем в этой точке касательную к графику функции y = f ( x ) (рис. 3.1).

Теорема будет доказана, если будет показано, что все точки кривой на промежутке ( a , b ) лежат под этой касательной. Иначе говоря, необходимо доказать, что для одних и тех же значений x ординаты кривой y = f ( x ) меньше, чем ординаты касательной, проведенной к ней в точке .

Рис. 3.1

Для определенности обозначим уравнение кривой: = f ( x ) , а уравнение касательной к ней в точке :

- f ( ) = ( )( x - )

или

= f ( ) + ( )( x - ) .

Составим разность и :

- = f(x) – f( ) - ( )(x- ).

Применим к разности f ( x ) – f ( ) теорему о среднем Лагранжа:

- = ( )( x - ) - ( )( x - ) = ( x - )[ ( ) - ( )] ,

где ϵ ( , x ).

Применим теперь теорему Лагранжа к выражению в квадратных скобках:

- = ( )( - )( x - ) , где ϵ ( , ).

Как видно из рисунка, x > , тогда x - > 0 и - > 0 . Кроме того, по условию теоремы, ( )<0.

Перемножая эти три множителя, получим, что , что и требовалось доказать.

Определение 3.2 . Точка, отделяющая интервал выпуклости от интервала вогнутости, называется точкой перегиба .

Из определения 3.1 следует, что в данной точке касательная пересекает кривую, то есть с одной стороны кривая расположена ниже касательной, а с другой – выше.

Теорема 3.2 . Если в точке вторая производная функции

y = f ( x ) равна нулю или не существует, а при переходе через точку знак второй производной меняется на противоположный, то данная точка является точкой перегиба .

Доказательство данной теоремы следует из того, что знаки ( x ) по разные стороны от точки различны. Значит, с одной стороны от точки функция выпукла, а с другой – вогнута. В этом случае, согласно определению 3.2, точка является точкой перегиба.

Исследование функции на выпуклость и вогнутость проводится по той же схеме, что и исследование на экстремум.

4. Асимптоты функции

В предыдущих пунктах были рассмотрены методы исследования поведения функции с помощью производной. Однако среди вопросов, касающихся полного исследования функции, есть и такие, которые с производной не связаны.

Так, например, необходимо знать, как ведет себя функция при бесконечном удалении точки ее графика от начала координат. Такая проблема может возникнуть в двух случаях: когда аргумент функции уходит на бесконечность и когда при разрыве второго рода в конечной точке уходит на бесконечность сама функция. В обоих этих случаях может возникнуть ситуация, когда функция будет стремиться к некоторой прямой, называемой ее асимптотой.

Определение . Асимптотой графика функции y = f ( x ) называется прямая линия, обладающая тем свойством, что расстояние от графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат .

Различают два типа асимптот: вертикальные и наклонные.

К вертикальным асимптотам относятся прямые линии x = , которые обладают тем свойством, что график функции в их окрестности уходит на бесконечность, то есть, выполняется условие: .

Очевидно, что здесь удовлетворяется требование указанного определения: расстояние от графика кривой до прямой x = стремится к нулю, а сама кривая при этом уходит на бесконечность. Итак, в точках разрыва второго рода функции имеют вертикальные асимптоты, например, y = в точке x = 0 . Следовательно, определение вертикальных асимптот функции совпадает с нахождением точек разрыва второго рода.

Наклонные асимптоты описываются общим уравнением прямой линии на плоскости, то есть y = kx + b . Значит, в отличие от вертикальных асимптот, здесь необходимо определить числа k и b .

Итак, пусть кривая = f ( x ) имеет наклонную асимптоту, то есть при x точки кривой сколь угодно близко подходят к прямой = kx + b (рис. 4.1). Пусть M ( x , y ) - точка, расположенная на кривой. Ее расстояние от асимптоты будет характеризоваться длиной перпендикуляра | MN | .

Достаточно часто в курсе математического анализа можно встретить задание со следующей формулировкой: «исследовать функцию и построить график» . Данная формулировка говорит сама за себя и разбивает задачу на два этапа:

  • Этап 1: исследование функции;
  • Этап 2: построение графика исследуемой функции.

Первый этап наиболее объемный и включает в себя отыскание областей определения и значений, экстремумов функции, точек перегиба графика и т.д.

Полный план исследования функции $y=f(x)$, предваряющий цель построение графика, имеет следующие пункты:

  • Поиск области определения функции $D_{y} $ и области допустимых значений $E_{y} $ функции.
  • Определение вида функции: четная, нечетная, общего вида.
  • Определение точек пересечения графика функции с осями координат.
  • Нахождение асимптот графика функции (вертикальные, наклонные, горизонтальные).
  • Нахождение интервалов монотонности функции и точек экстремума.
  • Нахождение промежутков выпуклости, вогнутости графика и точек перегиба.

Поиск области определения функции $D_{y} $ подразумевает нахождение интервалов, на которых данная функция существует (определена). Как правило, данная задача сводится к отысканию ОДЗ (область допустимых значений), на основании которых формируется $D_{y} $.

Пример 1

Найти область определения функции $y=\frac{x}{x-1} $.

Найдем ОДЗ рассматриваемой функции, т.е. значения переменной, при которых знаменатель не обращается в ноль.

ОДЗ: $x-1\ne 0\Rightarrow x\ne 1$

Запишем область определения: $D_{y} =\{ x\in R|x\ne 1\} $.

Определение 1

Функция $y=f(x)$ является четной в случае, если выполняется следующее равенство $f(-x)=f(x)$ $\forall x\in D_{y} $.

Определение 2

Функция $y=f(x)$ является нечетной в случае, если выполняется следующее равенство $f(-x)=-f(x)$ $\forall x\in D_{y} $.

Определение 3

Функция, не являющаяся ни четной, ни нечетной, называется функцией общего вида.

Пример 2

Определить вид функций: 1) $y=\frac{x}{x-1} $, 2) $y=\frac{x^{2} }{x^{2} -1} $; 3) $y=\frac{x}{x^{2} -1} $.

1) $y=\frac{x}{x-1} $

$f(-x)\ne f(x);f(-x)\ne -f(x)$, следовательно, имеем функцию общего вида.

2) $y=\frac{x^{2} }{x^{2} -1} $

$f(-x)=f(x)$, следовательно, имеем четную функцию.

3) $y=\frac{x}{x^{2} -1} $.

$f(-x)\ne -f(x)$, следовательно, имеем нечетную функцию.

Определение точек пересечения графика функции с осями координат включает нахождение точек пересечения: с осью ОХ ($y=0$), с осью OY ($x=0$).

Пример 3

Найти точки пересечения с осями координат функции $y=\frac{x+2}{x-1} $.

  1. с осью ОХ ($y=0$)

$\frac{x+2}{x-1} =0\Rightarrow x+2=0\Rightarrow x=-2$; получаем точку (-2;0)

  1. с осью ОY ($x=0$)

$y(0)=\frac{0+2}{0-1} =-2$, получаем точку (0;-2)

На основе результатов, полученных на этапе исследования функции, строится график. Иногда для построения графика функции недостаточно точек, полученных на первом этапе, тогда необходимо найти дополнительные точки.

Пример 4

Исследовать функцию и построить ее график: $y=x^{3} -6x^{2} +2x+1$.

  1. Область определения: $D_{y} =\{ x|x\in R\} $.
  2. Область значений: $E_{y} =\{ y|y\in R\} $.
  3. Четность, нечетность функции :\ \

Функция общего вида, т.е. не является ни четной, ни нечетной.

4) Пересечение с осями координат:

    с осью OY: $y(0)=0^{3} -6\cdot 0^{2} +2\cdot 0+1=1$, следовательно, график проходит через точку (0;1).

    с осью OХ: $x^{3} -6x^{2} +2x+1=0$ (рациональных корней нет)

5) Асимптоты графика:

Вертикальных асимптот нет, так как $D_{y} =\{ x|x\in R\} $

Наклонные асимптоты будем искать в виде $y=kx+b$.

$k=\mathop{\lim }\limits_{x\to \infty } \frac{y(x)}{x} =\mathop{\lim }\limits_{x\to \infty } \frac{x^{3} -6x^{2} +2x+1}{x} =\infty $. Следовательно, наклонных асимптот нет.

6) Возрастание, убывание функции; экстремумы:

\ \[\begin{array}{l} {y"=0\Rightarrow 3x^{2} -12x+2=0} \\ {D=144-24=120} \\ {x_{1,2} =\frac{12\pm \sqrt{120} }{6} } \end{array}\]

Отметим точки на числовой оси, расставим знаки первой производной и отметим поведение функции:

Рисунок 1.

Функция возрастает на $\left(-\infty ;\frac{12-\sqrt{120} }{6} \right]$ и $\left[\frac{12+\sqrt{120} }{6} ;\infty \right)$, убывает на $\left[\frac{12-\sqrt{120} }{6} ;\frac{12+\sqrt{120} }{6} \right]$.

$x=\frac{12-\sqrt{120} }{6} $ - точка максимума; $y\left(\frac{12-\sqrt{120} }{6} \right)=1,172$

$x=\frac{12+\sqrt{120} }{6} $ - точка минимума; $y\left(\frac{12+\sqrt{120} }{6} \right)=-23,172$

7) Выпуклость, вогнутость графика:

\ \[\begin{array}{l} {y""=(3x^{2} -12x+2)"=6x-12} \\ {y""=0\Rightarrow 6x-12=0\Rightarrow x=2} \end{array}\]

Отметим точки на числовой оси, расставим знаки второй производной и отметим поведение графика функции:

Рисунок 2.

График направлен выпуклостью вверх на $(-\infty ;2]$, вниз на $

8) График функции:

Рисунок 3.

Одна из возможных схем исследования функции и построения се графика разлагается на следующие этапы решения задачи: 1. Область определения функции (О.О.Ф.). 2. Точки разрыва функции, их характер. Вертикальные асимптоты. 3. Четность, нечетность, периодичность функции. 4. Точки пересечения графика с осями координат. 5. Поведение функции на бесконечности. Горизонтальные и наклонные асимптоты. 6. Интервалы монотонности функции, точки максимума и минимума. 7. Направления выпуклости кривой. Точки перегиба. 8. График функции. Пример 1. Построить график функции у = 1 . (верэиора или локон Марии Аньеэи). - вся числовая ось. 2. Точек разрыва нет; вертикальных асимптот нет. 3. Функция четная: , так что график ее симметричен относительно оси Оу\ непериодическая. Из четности функции следует, что достато^о построить ее график на полупрямой х ^ О, а затем зеркально отразить его в оси Оу. 4. При х = 0 имеем Ух, так что график функции лежит в верхней полуплоскости у > 0. Схема построения графика функции Исследование функций на экстремум с помощью производных высшего порядка Вычисление корней уравнений методами хорд и касательных что график имеет горизонтальную асимптоту у = О, наклонных асимптот нет. Так то функция возрастает при и убывает, когда. Точка х = 0 - критическая. При переходе х через точку х = 0 производная у"(х) меняет знак с минуса на плюс. Следовательно, точка х = 0 - точка максимума, y(Q) = I. Результат этот достаточно очевиден: /(х) = T^IV*. Вторая производная обращается в нуль в точках х = . Исследуем точку х = 4- (далее соображение симметрии). При имеем. кривая выпукла вниз; при получаем (кривая выпукла вверх). Следовательно, точка х = = - - точка перегиба графика функции. Результаты исследования сведем в таблицу: Точка перегиба max Точка перегиба В таблице стрелка У» указывает на возрастание функции, стрелка «\» - на ее убывание. График функции изображен на рис. 33. Пример 2. Построить график функции (трезубец Ньютона). - вся числовая ось, исключая точку 2. Точка разрыва функции. Имеем так что прямая х = 0 - вертикальная асимптота. 3. Функция не является ни четной, ни нечетной [функция общего положения), непериодическая. Полагая получаем график функции пересекает ось Ох в точке (-1,0). наклонных и гори- зонтальных асимптот нет. откуда критическая точка. Вторая производная функции в точке, так что х = - точка минимума. Вторая производная обращается в ууль в точке и меняет свой знак при переходе через эту точку. Следовательно, точка - точка перегиба кривой. Для) имеем е. выпуклость кривой направлена вниз; для -I имеем. выпуклость кривой направлена вверх. Результаты исследования сводим в таблицу: Не существует Не существует Точка перегиба Не существует. Вертикальная асимптота торая производная обращается в нуль при х = е,/2. и при переходе х через эту точку у" меняет знак Следовательно, - абсцисса точки перегиба кривой. Результаты исследования сводим в таблицу: Точка перегиба. График функции изображен на рис. 37. Пример 4. Построить график функции вся числовая ось, исключая точку Точка точка разрыва 2-го рода функции. Так как Km . то прямая вертикальная асимптота графика функции. Функция общего положения, непериодическая. Полагая у = 0, имеем, откуда так что график функции пересекает ось Ох в точке Следовательно, график функции имеет наклонную асимптоту Из условия получаем - критическая точка. Вторая производная функции у" = Д > 0 всюду в области определения, в частности, в точке - точка минимума функции. 7. Поскольку, то всюду в области определения функции выпуклость ее графика направлена вниз. Результаты исследования сводим в таблицу: Не существует Не существует Не существует. х = 0 -вертикальная асимптота График функции изображен на рис. Пример 5. Построить график функции вся числовая ось. 2. Непрерывна всюду. Вертикальных асимптот нет. 3. Общего положения, непериодическая. 4. Функция обращается в нуль при 5. Таким образом, график функции имеет наклонную асимптоту Производная обращается в нуль в точке и не существует при. При переходе х через точку) производная не меняет знак, так что в точке х = 0 экстремума нет. При переходе точки х через точку производная) меняет знак с « + » на Значит в функция имеет максимум. При переходе х через точку х = 3 (х > I) производная у"(х) меняет знак т. е. в точсе х = 3 функция имеет минимум. 7. Находим вторую производную Схема построения графика функции Исследование функций на экстремум с помощью производных высшего порядка Вычисление корней уравнений методами хорд и касательных Вторая производная у"(х) не существует в точке х = 0 и при переходе х через точку х = 0 у" меняет знак с + на так что точка (0,0) кривой - точка перегиба с вертикальной касательной. В точке х = 3 перегиба графика нет. Всюду в полуплоскости х > 0 выпуклость кривой направлена вверх. Результаты исследования сводим в таблицу: Не существует Не существует Не существует Не существует Точка перегиба (0.0) с вертикальной касательной График функции представлен на рис. 39. §7. Исследование функций на экстремум с помощью производных высшего порядка Для отыскания точек максимума и минимума функций может быть использована формула Тейлора. Теорема It. Пусть функция /(х) в некоторой окрестности точки xq имеет производную п-го порядка, непрерывную в точке хо- Пусть 0. Тогда если число п - нечетное, то функция f{x) в точке х0 не имеет экстремума; когда же п - четное, то в точке х0 функция f(x) имеет максимум, если /(п)(х0) < 0, и минимум, если /. В силу определения точек максимума и минимума вопрос о том, имеет ли функция f(x) в точке х0 экстремум, сводится к тому, существует ли такое <5 > 0, что в интервале, разность - /(х0) сохраняет знак. По формуле Тейлора как по условию, то из (1) получаем 1оусловию/(п*(г) непрерывна вточкего и Ф Поэтому в силуустойчивости нака непрерывной функции существует такое, что в интервале () не меняется и совпадает со знаком /(п)(хо). Рассмотрим возможные случаи: 1) п - четное число и / Тогда I потому в силу (2) . Согласно определению это означает, что точка го есть точка минимума функции /(г). 2) п - четное и. Тогда будем иметь i вместе с этим и Поэтому точка го будет в этом:лучае точкой максимума функции /(г). 3) п - нечетное число, /- Тогда при х > х0 знак >удет совпадать со знаком /(п)(го), а при г го будет противоположным. Поэтому 1ри сколь угодно малом 0 знак разности /(г) - /(го) не будет одним и тем же 1ля всех х е (го - 6, го + £). Следовательно, в этом случае функция /(г) в точке го жстремума не имеет. Пример. Рассмотрим функции Л Легко видеть, что точка х = 0 является критической точкой обеих функций. Для функции у = х4 первая из отличных от нуля производных в точке х = 0 есть производная 4-го порядка: Таким образом, здесь п = 4 - четное и. Следовательно, в точке х = 0 функция у = х4 имеет минимум. Для функции у = х} первая из отличных от нуля в точке х = 0 производных есть производная 3-го порядка. Так что в этом случае п = 3 - нечетное, и в точке х = 0 функция у = х3 экстремума не имеет. Замечание. С помошью формулы Тейлора можно доказать следующую теорему, выражающую достаточные условия точки перегиба. "еорема 12. Пусть функция /(г) в некоторой окрестности точки г0 имеет производп-го порядка, непрерывную в точке xq. Пусть, но /(п)(*о) Ф 0- Тогда, если п - нечетное число, то точка Мо(х0, f(xо)) есть точка перегиба графика функции у = f(x). Простейший пример доставляет функция. §8. Вычисление корней уравнений методами хорд и касательных Задача состоит в нахождении действительного корня уравнения Предположим, что выполнены следующие условия: 1) функция f(x) непрерывна на отрезке [а, 6]; 2) числа /(а) и f{b) противоположны по знаку: 3) на отрезке [а, 6] существуют производные f"(x) и f"(x), сохраняющие на этом отрезке постоянный знак. Из условий 1) и 2) в силу теоремы Больцано-Коши (с. 220) следует, что функция /(ж) обращается в нуль по крайней мере в одной точке £ € (а, Ь), т. е. уравнение (1) имеет по крайней мере один действительный корень £ в интервале (а, 6). Так как в силу условия 3) производная /"(х) на [а, Ь\ сохраняет постоянный знак, то f(x) монотонна на [а, Ь] и поэтому в интервале (а, Ь) уравнение (1) имеет только один действительный корень Рассмотрим метод вычисления приближенного значения этого единственного действительного корня £ € (а, 6) уравнения (I) с любой степенью точности. Возможны четыре случая (рис. 40): 1) Рис. 40 Возьмем для определенности случай, когда f\x) > 0, f"(x) > 0 на отрезке [а, 6) (рис.41). Соединим точки А(а, /(а)) и В(Ь, f(b)) хордой А В. Это отрезок прямой, проходящей через точки А и В, уравнение которой Точка aj, в которой хорда АВ пересекает ось Ох, расположена между аи(и является лучшим приближением к чем а. Полагая в (2) у = 0, найдем Из рис. 41 нетрудно заметить, что точка а\ будет всегда расположена с той стороны от в которой знаки f(x) и f"(x) противоположны. Проведем теперь касательную к кривой у = /(х) в точке B(b, f(b)), т. е. в том конце дуги ^АВ, в котором f(x) и /"(я) имеют один и тот же знак. Это существенное условие: без его соблюдения точка пересечения касательной с осью Ох может вовсе не давать приближение к искомому корню. Точка Ь\, в которой касательная пересекает ось Ох, расположена между £ и b с той же стороны, что и 6, и является лучшим приближением к чем Ь. Касательная эта определяется уравнением Полагая в (3) у = 0, найдем Ь\: Схема построения графика функции Исследование функций на экстремум с помощью производных высшего порядка Вычисление корней уравнений методами хорд и касательных Таким образом, имеем Пусть абсолютная погрешность приближения С корня £ задана заранее. За абсолютную погрешность приближенных значений aj и 6, корня £ можно взять величину |6i - ai|. Если эта погрешность больше допустимой, то, принимая отрезок за исходный, найдем следующие приближения корня где. Продолжая этот процесс, получим две последовательности приближенных значений Последовательности {ап} и {bn} монотонные и ограниченные и, значит, имеют пределы. Пусть Можно показать, что если выполнены сформулированные выше условия 1 единственному корню уравнения / Пример. Найти корень (уравнения г2 - 1=0 на отрезке . Таким образом, выполнены все условия, обеспечивающие существование единственного корня (уравнения х2 - 1 = 0 на отрезке . и метод должен сработать. 8 нашем случае а = 0, b = 2. При п = I из (4) и (5) находим При п = 2 получаем что дает приближение к точному значению корня (с абсолютной погрешностью Упражнения Постройте графики функций: Найдите наибольшее и наименьшее значение функций на заданных отрезках: Исследуйте поведение функций в окрестностях заданных точек с помощью производных высших порядков: Ответы

Выбор редакции
В зависимости от вида штрафа, в 1С 8.3 применяется различный порядок отражения в учете. Рассмотрим наиболее распространённые ситуации. На...

1. Для начала необходимо отобрать початки кукурузы. Они должны быть одинакового размера и не очень крупные. Именно поэтому лучше отдать...

Скумбрия тушеная — общие принципы приготовления Тушеная скумбрия – простое в приготовлении, вкусное и очень полезное блюдо. Для него не...

Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
С наступлением поста многие из нас задаются вполне обоснованными вопросами. Например, таким: «Можно ли есть в пост морепродукты?» Здесь...
Карп – один из символов водной стихии. Кроме того, эта рыба во многих культурах наделяется особыми свойствами. К примеру, на востоке...
Две недели назад 36-летняя Анастасия Мыскина объявила о расставании с гражданским мужем, политиком и бизнесменом Сергеем Мамедовым....
Почти у всех людей, изучающих английский язык, возникают трудности при изучении грамматики. И речь идет не только о понимании правил...