Жидкие вещества и их свойства. Жидкое состояние вещества. Вещество и его состояния Общая характеристика жидкого состояния вещества


· Уравнение Эйлера · Уравнения Навье - Стокса · Уравнение диффузии · Закон Гука

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы .) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси . Некоторые смеси жидкостей имеют большое значение для жизни: кровь , морская вода и др. Жидкости могут выполнять функцию растворителей .

Физические свойства жидкостей

  • Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу , то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести : достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа , между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля , справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0°С до приблизительно 4°С.

  • Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью . Она определяется как способность оказывать сопротивление перемещению одной из части относительно другой - то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением . Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую – энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится "окружить" себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшится.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение .)

  • Испарение и конденсация
  • Диффузия

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи .

Переохлаждение - охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние . Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространятся упругие волны , более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком .

Если плотность меняется достаточно сильно, то такая волна называется ударной волной . Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания - вязкость, "классическое поглощение", молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость – внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости .

Если возвращающая сила - это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила - это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости звтухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества - газообразной или кристаллической - нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием - например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс - конденсация.

Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление . Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики - гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика - часть более общей отрасли механики, механики сплошной среды .

Гидромеханика - это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика .

Гидромеханика подразделяется на гидростатику , в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике . Для решения прикладных задач применяется гидравлика .

Основной закон гидростатики - закон Паскаля .

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород , жидкий азот). Такие молекулы обладают квадрупольным моментом .

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода , глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы .

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы , которые представляют собой особые случаи и должны рассматриваться отдельно.

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где n - число частиц в единице объёма, - безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа : . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений . В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория» . В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру . Энергия частиц отвечает распределению Больцмана , средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье . Таким образом, легко объяснить фазовое превращение:

  • При нагревании система постепенно превратится в газ (кипение)
  • При охлаждении система постепенно превратится в твёрдое тело (замерзание).

Экспериментальные методы изучения

Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа , электронографии и нейтронографии .

См. также

  • Особенности поверхостного слоя жидкости

Ссылки

На вопрос Примеры жидких веществ. заданный автором Нина Булатова лучший ответ это Н2О - вода, Жидкий металл - ртуть! Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое .
Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела) .
Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.
Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние - стекло) , выше - в газообразное (происходит испарение). Границы этого интервала зависят от давления.
Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза) .
Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.
[править]
Физические свойства жидкостей
Текучесть
Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.
В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.
Сохранение объёма
Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.
Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.
Вязкость
Кроме того, жидкости (как и газы) характеризуются вязкостью. Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой - то есть как внутреннее трение.
Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением. Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую - энергию хаотического движения молекул.
Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

В повседневной жизни мы постоянно сталкиваемся с тремя состояниями вещества - жидким, газообразным и твердым. О том, что представляют собой твердые тела и газы, мы имеем довольно ясное представление. Газ - совокупность молекул, которые движутся беспорядочно по всем направлениям. Все молекулы твердого тела сохраняют взаимное расположение. Они совершают только незначительные колебания.

Особенности жидкого вещества

А что же представляют собой жидкие вещества? Основной их особенностью является то, что, занимая промежуточное положение между кристаллами и газами, они сочетают в себе определенные свойства двух этих состояний. Например, для жидкостей, так же как и для твердых свойственно наличие объема. Однако в то же время жидкие вещества, так же как и газы, принимают форму сосуда, в котором находятся. Многие из нас полагают, что у них нет своей собственной формы. Однако это не так. Естественная форма любой жидкости - шар. Сила тяжести обычно мешает ей принять эту форму, поэтому жидкость либо принимает форму сосуда, либо растекается по поверхности тонким слоем.

По своим свойствам жидкое состояние вещества особенно сложно, что обусловлено промежуточным его положением. Оно начало изучаться еще со времен Архимеда (2200 лет назад). Однако анализ того, как ведут себя молекулы жидкого вещества, до сих пор является одной из наиболее трудных областей прикладной науки. Общепризнанной и вполне законченной теории жидкостей все еще нет. Однако кое-что об их поведении мы можем сказать вполне определенно.

Поведение молекул в жидкости

Жидкость - что-то такое, что может течь. Ближний порядок наблюдается в расположении ее частиц. Это означает, что расположение соседей, ближайших к ней, по отношению к любой частице является упорядоченным. Однако по мере того, как она удаляется от других, положение ее по отношению к ним делается все менее упорядоченным, а затем порядок и вовсе исчезает. Жидкие вещества состоят из молекул, которые движутся намного более свободно, чем в твердых телах (а в газах - еще свободнее). В течение определенного времени каждая из них устремляется то в одну сторону, то в другую, не удаляясь от своих соседей. Однако молекула жидкости время от времени вырывается из окружения. Она попадает в новое, переходя в другое место. Здесь снова в течение определенного времени она совершает подобные колебанию движения.

Вклад Я. И. Френкеля в изучение жидкостей

Я. И. Френкелю, советскому ученому, принадлежат большие заслуги в разработке целого ряда проблем, посвященных такой теме, как жидкие вещества. Химия сильно продвинулась вперед благодаря его открытиям. Он считал, что в жидкостях тепловое движение имеет следующий характер. В течение определенного времени каждая молекула колеблется около положения равновесия. Однако она меняет свое место время от времени, перемещаясь скачком на новое положение, которое от предыдущего отстоит на расстояние, составляющее примерно размеры самой этой молекулы. Другими словами, внутри жидкости молекулы перемещаются, но медленно. Часть времени они пребывают около определенных мест. Следовательно, движение их представляет собой что-то вроде смеси совершаемых в газе и в твердом теле движений. Колебания на одном месте через некоторое время сменяются свободным переходом с места на место.

Давление в жидкости

Некоторые свойства жидкого вещества нам известны благодаря постоянному взаимодействию с ними. Так, из опыта повседневности мы знаем о том, что оно действует на поверхность твердых тел, которые соприкасаются с ней, с известными силами. Они именуются силами

Например, приоткрывая отверстие водопроводного крана пальцем и включая воду, мы ощущаем, как она давит на палец. А пловец, который нырнул на большую глубину, не случайно испытывает боль в ушах. Она объясняется тем, что на барабанную перепонку уха воздействуют силы давления. Вода - жидкое вещество, поэтому она обладает всеми его свойствами. Для того чтобы измерить температуру воды на глубине моря, следует использовать очень прочные термометры, чтобы их не могло раздавить давление жидкости.

Это давление обусловлено сжатием, то есть изменением объема жидкости. Она обладает по отношению к этому изменению упругостью. Силы давления - это и есть силы упругости. Следовательно, если жидкость действует на тела, соприкасающиеся с ней, значит, она сжата. Поскольку плотность вещества при сжатии растет, можно считать, что жидкости по отношению к изменению плотности обладают упругостью.

Испарение

Продолжая рассматривать свойства жидкого вещества, переходим к испарению. Вблизи поверхности его, а также непосредственно в поверхностном слое действуют силы, обеспечивающие само существование этого слоя. Они не позволяют покидать объем жидкости молекулам, находящимся в нем. Однако некоторая их часть благодаря тепловому движению развивает довольно большие скорости, с помощью которых становится возможно преодолеть эти силы и покинуть жидкость. Мы называем это явление испарением. Его можно наблюдать при любой температуре воздуха, однако с ее увеличением интенсивность испарения возрастает.

Конденсация

Если молекулы, покинувшие жидкость, удаляются из пространства, находящегося вблизи ее поверхности, то вся она, в конце концов, испаряется. Если же покинувшие ее молекулы не удаляются, они формируют пар. Попавшие в область, находящуюся вблизи поверхности жидкости, молекулы пара втягиваются в нее Этот процесс получил название конденсации.

Следовательно, если молекулы не удаляются, со временем уменьшается скорость испарения. Если плотность пара в дальнейшем увеличивается, достигается ситуация, при которой количество молекул, покидающих за определенное время жидкость, будет равняться количеству молекул, которые возвращаются за это же время в нее. Так возникает состояние динамического равновесия. Пар, находящийся в нем, называется насыщенным. Давление и плотность его увеличиваются с повышением температуры. Чем она выше, тем большее количество молекул жидкости имеет достаточную для испарения энергию и тем большей плотностью должен обладать пар для того, чтобы с испарением могла сравняться конденсация.

Кипение

Когда в процессе нагревания жидких веществ достигается такая температура, при которой насыщенные пары имеют такое же давление, как и внешняя среда, устанавливается равновесие между насыщенным паром и жидкостью. Если жидкость сообщает дополнительное количество теплоты, сразу же происходит превращение в пар соответствующей массы жидкости. Этот процесс именуют кипением.

Кипение представляет собой интенсивное испарение жидкости. Оно происходит не только с поверхности, а касается всего ее объема. Внутри жидкости появляются пузырьки пара. Для того чтобы перейти в пар из жидкости, молекулам необходимо приобрести энергию. Она нужна для преодоления сил притяжения, благодаря которым они удерживаются в жидкости.

Температура кипения

Это та, при которой наблюдается равенство двух давлений - внешнего и насыщенных паров. Она увеличивается при увеличении давления и уменьшается при его уменьшении. Из-за того, что с высотой столба давление в жидкости меняется, кипение в ней происходит на различных уровнях при разной температуре. Только находящийся над поверхностью жидкости в процессе кипения, имеет определенную температуру. Она определяется лишь внешним давлением. Именно ее мы и имеем в виду, когда говорим о температуре кипения. Она отличается у разных жидкостей, что широко применяется в технике, в частности, при разгонке нефтепродуктов.

Скрытая теплота парообразования - это количество тепла, необходимое для того, чтобы превратить в пар изотермически определенное количество жидкости, если внешнее давление то же, что и давление насыщенных паров.

Свойства жидкостных пленок

Все мы знаем о том, как можно получить пену, растворив в воде мыло. Это не что иное, как множество пузырьков, которые ограничены состоящей из жидкости тончайшей пленкой. Однако из образующей пену жидкости можно получить также и отдельную пленку. Свойства ее очень интересны. Пленки эти могут быть очень тонкими: их толщина в самых тонких частях не превышает стотысячной доли миллиметра. Однако они порой очень устойчивы, несмотря на это. Мыльную пленку можно подвергать деформации и растяжению, сквозь нее может проходить струя воды, при этом не разрушая ее. Как же объяснить такую устойчивость? Для того чтобы появилась пленка, необходимо к чистой жидкости прибавить вещества, растворяющиеся в ней. Но не любые, а такие, которые значительно понижают поверхностное натяжение.

Жидкостные пленки в природе и технике

В технике и природе мы встречаемся главным образом не с отдельными пленками, а с пеной, которая представляет собой их совокупность. Ее нередко можно наблюдать в ручьях, где в спокойную воду падают небольшие струйки. Способность воды пениться в данном случае связана с наличием в ней органического вещества, которое выделяют корни растений. Это пример того, как пенятся природные жидкие вещества. А как же обстоит дело с техникой? При строительстве, например, используют специальные материалы, которые обладают ячеистой структурой, напоминающей пену. Они легки, дешевы, достаточно прочны, плохо проводят звуки и теплоту. Для получения их в специальные растворы добавляют способствующие пенообразованию вещества.

Вывод

Итак, мы узнали, какие вещества относятся к жидким, выяснили, что жидкость является промежуточным состоянием вещества между газообразным и твердым. Поэтому у нее есть свойства, характерные для того и другого. которые сегодня широко используются в технике и промышленности (например, жидкокристаллические дисплеи) являются ярким примером этого состояния вещества. В них объединены свойства твердых тел и жидкостей. Сложно представить, какие вещества жидкие изобретет в будущем наука. Однако ясно, что в этом состоянии вещества есть большой потенциал, который можно использовать во благо человечества.

Особый интерес к рассмотрению физико-химических процессов, протекающих в жидком состоянии, обусловлен тем, что сам человек состоит на 90% из воды, которая является самой распространенной на Земле жидкостью. Именно в ней происходят все жизненно важные процессы как в растительном, так и в животном мире. Поэтому для всех нас актуально изучать жидкое состояние вещества.

Жидкостями называют вещества, находящиеся в жидком агрегатном состоянии при обычных условиях. По внешним признакам это состояние характеризуется наличием постоянного объема для данной порции жидкости, текучестью, способностью постепенно испаряться. Собственной формой жидкости является шар (капля), который образует жидкость под действием силы поверхностного натяжения. Это возможно при отсутствии силы тяжести. Капли образуются при свободном падении жидкости, а в пространстве космического корабля, в условиях невесомости, форму шара может принять значительный объем жидкости. В спокойном состоянии жидкость растекается но поверхности или заполняет объем любого сосуда. Среди неорганических веществ к жидкостям относятся вода, бром, ртуть, немногочисленные устойчивые безводные кислоты (серная, фтороводородная и др.). Очень много жидкостей среди органических соединений: углеводороды, спирты, кислоты и т.д. Практически во всех гомологических рядах органических соединений есть жидкости. При охлаждении в жидкое состояние переходят газы, а при нагревании - металлы, устойчивые соли, оксиды металлов.

Жидкости можно классифицировать по природе составляющих их частиц на атомные (сжиженные благородные газы), молекулярные (большинство обычных жидкостей), металлические (расплавленные металлы), ионные (расплавленные соли, оксиды металлов). Кроме индивидуальных веществ, в жидком состоянии находятся смеси жидкостей и растворы самых разнообразных веществ в жидкостях. Наибольшее практическое значение среди жидкостей имеет вода, что определяется ее уникальной ролью как биологического растворителя. В химии и прикладных областях жидкости наряду с газами наиболее важны как среда для проведения всевозможных процессов превращения веществ. Жидкости используются также для передачи тепла по трубам, в гидравлических устройствах - как рабочее тело, в качестве смазки движущихся деталей машин.

В жидком состоянии вещества частицы находятся на расстояниях, близких к сумме их вандерваальсовых радиусов. Потенциальная энергия молекул становится отрицательной по отношению к их энергии в газе. Для ее преодоления при переходе в газообразное состояние молекулам необходима кинетическая энергия, приблизительно равная потенциальной энергии. Поэтому вещество находится в жидком состоянии в таком температурном интервале, в котором средняя кинетическая энергия приблизительно равна потенциальной энергии взаимодействия или ниже нее, но не падает до нуля.

где е - основание натуральных логарифмов; R - универсальная газовая постоянная; АН исп - молярная теплота испарения жидкости; Л - постоянная, зависящая от свойств жидкости.

Анализ уравнения показывает, что давление пара жидкости быстро возрастает с повышением температуры, так как температура находится в знаменателе отрицательного показателя степени. Уравнение (7.13) достаточно точно выполняется при условии, что температура значительно ниже критической температуры пара данного вещества.

При достижении температуры, при которой давление пара жидкости становится равным атмосферному давлению, жидкость закипает. При этом подразумевается, что над поверхностью жидкости находится воздух. Если же заключить жидкость в закрытый сосуд, например в цилиндр, с поршнем, производящим давление, равное атмосферному (101,3 кПа), то при нагревании жидкости до температуры кипения пар над жидкостью еще не обра-

Среди молекул как газа, так и жидкости имеются как более быстрые, так и более медленные молекулы относительно средней скорости их движения. Быстрые молекулы преодолевают притяжение и переходят в газовую фазу при наличии свободного объема. При испарении за счет потери более быстрых молекул жидкость охлаждается. Над поверхностью жидкости в замкнутом объеме устанавливается определенное давление ее пара, зависящее от природы жидкости и от температуры. Зависимость выражается экспоненциальным уравнением зуется. При превышении температуры кипения появится пар, т.е. газовая фаза, и поршень начнет подниматься по мере подвода теплоты и увеличения объема пара (рис. 7.4).


Рис. 7.4.

Жидкости, кипящие при температуре ниже температуры кипения воды, обычно называют летучими. Из открытого сосуда они довольно быстро улетучиваются. При температуре кипения 20-22 °С вещество фактически оказывается пограничным между летучей жидкостью и легко сжижающимся газом. Примерами таких веществ являются ацетальдегид СН 3 СНО (? кип = 21°С) и фтороводород HF (? кип = 19,4°С).

Практически важными физическими характеристиками жидкостей, кроме температуры кипения, являются температура замерзания, цвет, плотность, коэффициент вязкости, показатель преломления. Для однородных сред, какими являются жидкости, показатель преломления легко измеряется и служит для идентификации жидкости. Некоторые константы жидкостей приведены в табл. 7.3.

Равновесие между жидкой, твердой и газообразной фазами данного вещества изображается в виде диаграммы состояния. На рис. 7.5 показана диаграмма состояния воды. Диаграмма состояния представляет собой график, на котором нанесены зависимости давления насыщенного пара от температуры для жидкой воды и льда (кривые ОА и ОВ) и зависимость температуры плавления воды от давления (кривая ОС). Наличие небольшого давления пара над льдом (кривая ОВ) означает, что лед может испаряться (сублимировать), если давление паров воды в воздухе меньше равновесного давления над льдом. Пунктир, продолжающий кривую ОА влево от точки О, соответствует давлению пара над переохлажденной водой. Это давление превышает давление пара над льдом при той же температуре. Поэтому переохлажденная вода неустойчива и может спонтанно превратиться в лед. Иногда в холодную погоду наблюдается явление выпадения дождя, капли которого превращаются в лед при ударе о твердую поверхность. На поверхности возникает ледяная корка. Следует отметить, что и другие жидкости могут находиться в неустойчивом переохлажденном состоянии.

Некоторые практически важные жидкости

Название

Плотность р, г/см 3 (20°С)

Коэффициент преломления, и(20°С,

Фтороводород

Серная кислота

h 2 so 4

Муравьиная

Уксусная кислота

Глицерин

Тстрахлорид

углерода

Хлороформ

Нитробензол

c g ii 5 no 2

Рис. 75.

Кривые делят диаграмму на три поля - воды, льда и пара. Каждая точка на диаграмме означает определенное состояние системы. Точки внутри полей соответствуют существованию воды только в одной из трех фаз. Например, при 60 °С и давлении 50 к11а вода существует только в жидком состоянии. Точки, лежащие на кривых ОА, ОВ и ОС, соответствуют равновесию между двумя фазами. Например, при температурах и давлениях вдоль кривой ОА в равновесии находятся вода и пар. Точка пересечения О трех кривых с координатами 0,61 кПа и 0,01 °С соответствует равновесию между тремя фазами воды - льдом, жидкой водой и ее паром. Это так называемая тройная точка воды . Указанная температура на 0,01 °С выше, чем нормальная температура замерзания воды 0 °С, относящаяся к давлению 101,3 кПа. Из этого следует вывод, что при повышении внешнего давления температура замерзания воды понижается. Приведем еще одну точку: при давлении 615 атм (6,23-10 4 кПа) температура замерзания воды понижается до -5 °С.

По способности смешиваться между собой жидкости резко отличаются от газов. В жидкостях, в противоположность газам, важную роль играет межмолекулярное взаимодействие. Поэтому смешиваются между собой в любых соотношениях лишь такие жидкости, которые достаточно близки по энергии межмолекулярного взаимодействия. Например, между молекулами воды не только действуют ваидерваальсовы силы, но и образуются водородные связи. Поэтому смешиваются с водой разные жидкости, молекулы которых также могут давать с водой водородные связи: фтороводо- род, многие кислородсодержащие кислоты, низшие члены гомологического ряда спиртов, ацетон и др. Жидкости, не образующие водородные связи или препятствующие образованию таких связей между молекулами воды, с водой не смешиваются, но могут в той или иной мере, т.е. ограниченно, растворяться. Так, спирты с радикалами, состоящими из четырех и более атомов углерода, ограниченно растворимы в воде, так как радикалы, оказываясь между молекулами воды, мешают образованию водородных связей и выталкиваются из объема воды.

Внутреннее строение жидкостей характеризуется как относительно свободным взаимным перемещением молекул, так и возникновением структуры, сближающей жидкость с твердым состоянием. Выше говорилось о том, что в кристаллах на упорядоченно расположенных атомах происходит рассеяние рентгеновских лучей. Максимумы интенсивности рассеивания возникают при определенных углах падения исходного луча на плоскости, образуемые атомами внутри кристалла. В жидкостях также происходит рассеяние рентгеновского излучения. При небольшом угле падения, соответствующем рассеянию на близко расположенных атомах, возникает максимум, указывающий па наличие упорядоченности в ближайшем окружении атома. Но при увеличении угла падения максимумы быстро затухают, что указывает на отсутствие закономерного расположения для удаленных атомов. Таким образом, про жидкости можно сказать, что в них обнаруживается ближний порядок, при отсутствии дальнего порядка.

Структурирование жидкостей обнаруживается при изучении различных физических свойств. Известно, например, что вода при охлаждении до 4°С уплотняется, а при дальнейшем охлаждении снова начинает расширяться. Это объясняется образованием более ажурной структуры, соответствующей направленности водородных связей между молекулами. После замерзания эти связи окончательно стабилизируются, что следует из уменьшения плотности льда.

Аморфные твердые вещества - это довольно интересная подгруппа хорошо известного твердого состояния. В обычном твердом объекте молекулы хорошо организованы и не особо имеют пространство для движения. Это дает твердому веществу высокую вязкость, что является мерой сопротивления текучести. Жидкости, с другой стороны, имеют неорганизованную молекулярную структуру, что позволяет им течь, растекаться, изменять форму и принимать форму сосуда, в котором они находятся. Аморфные твердые вещества находятся где-то между этими двумя состояниями. В процессе витрификации жидкости остывают и их вязкость увеличивается до момента, когда вещество уже не течет подобно жидкости, но его молекулы остаются неупорядоченными и не принимают кристаллическую структуру, как обычные твердые вещества.

Наиболее распространенным примером аморфного твердого вещества является стекло. В течение тысяч лет люди делали стекло из диоксида кремния. Когда стеклоделы охлаждают кремнезем из жидкого состояния, он на самом деле не затвердевает, когда опускается ниже точки плавления. Когда температура падает, вязкость растет, вещество кажется тверже. Однако его молекулы по-прежнему остаются неупорядоченными. И тогда стекло становится аморфным и твердым одновременно. Этот переходный процесс позволил ремесленникам создавать красивые и сюрреалистические стеклянные структуры.

Каково же функциональное различие между аморфными твердыми веществами и обычным твердым состоянием? В повседневной жизни оно не особо заметно. Стекло кажется совершенно твердым, пока вы не изучите его на молекулярном уровне. И миф о том, что стекло стекает с течением времени, не стоит ломаного гроша. Чаще всего этот миф подкрепляется доводами о том, что старое стекло в церквях кажется толще в нижнем части, но обусловлено это несовершенством стеклодувного процесса на момент создания этих стекол. Впрочем, изучать аморфные твердые вещества вроде стекла интересно с научной точки зрения для исследования фазовых переходов и молекулярной структуры.

Сверхкритические жидкости (флюиды)

Большинство фазовых переходов происходит при определенной температуре и давлении. Общеизвестно, что повышение температуры в конечном счете превращает жидкость в газ. Тем не менее когда давление увеличивается вместе с температурой, жидкость совершает прыжок в царство сверхкритических жидкостей, у которых есть свойства как газа, так и жидкости. К примеру, сверхкритические жидкости могут проходить через твердые тела как газ, но также могут выступать в качестве растворителя, как жидкость. Интересно, что сверхкритическую жидкость можно сделать больше похожей на газ или на жидкость, в зависимости от комбинации давления и температуры. Это позволило ученым найти множество применений для сверхкритических жидкостей.

Хотя сверхкритические жидкости не так распространены, как аморфные твердые вещества, вы, вероятно, взаимодействуете с ними так же часто, как со стеклом. Сверхкритический диоксид углерода любят пивоваренные компании за его способность выступать в качестве растворителя при взаимодействии с хмелем, а кофе-компании используют его для производства лучшего кофе без кофеина. Сверхкритические жидкости также использовались для более эффективного гидролиза и чтобы электростанции работали при более высоких температурах. В общем, вы, вероятно, используете побочные продукты сверхкритических жидкостей каждый день.

Вырожденный газ


Хотя аморфные твердые вещества хотя бы встречаются на планете Земля, вырожденное вещество встречается лишь в определенных типах звезд. Вырожденный газ существует, когда внешнее давление вещества определяется не температурой, как на Земле, а сложными квантовыми принципами, в частности принципом Паули. Из-за этого внешнее давление вырожденного вещества будет сохраняться, даже если температура вещества упадет до абсолютного нуля. Известны два основных типа вырожденного вещества: электронно-вырожденное и нейтронно-вырожденное вещество.

Электронно-вырожденное вещество существует в основном в белых карликах. Оно образуется в ядре звезды, когда масса вещества вокруг ядра пытается сжать электроны ядра до низшего энергетического состояния. Однако в соответствии с принципом Паули, две одинаковых частицы не могут быть в одном энергетическом состоянии. Таким образом, частицы «отталкивают» вещество вокруг ядра, создавая давление. Это возможно только если масса звезды меньше 1,44 массы Солнца. Когда звезда превышает этот предел (известный как предел Чандрасекара), она просто коллапсирует в нейтронную звезду или в черную дыру.

Когда звезда коллапсирует и становится нейтронной звездой, у нее больше нет электронно-вырожденного вещества, она состоит из нейтронно-вырожденного вещества. Поскольку нейтронная звезда тяжелая, электроны сливаются с протонами в ее ядре, образуя нейтроны. Свободные нейтроны (нейтроны не связаны в атомном ядре) имеют период полураспада в 10,3 минуты. Но в ядре нейтронной звезды масса звезды позволяет нейтронам существовать за пределами ядер, образуя нейтронно-вырожденное вещество.

Другие экзотические формы вырожденного вещества также могут существовать, в том числе и странная материя, которая может существовать в редкой форме звезд - кварковых звезд. Кварковые звезды - это стадия между нейтронной звездой и черной дырой, где кварки в ядре развязаны и образуют бульон из свободных кварков. Мы пока не наблюдали такой тип звезд, но физики допускают их существование.

Сверхтекучесть

Вернемся на Землю, чтобы обсудить сверхтекучие жидкости. Сверхтекучесть - это состояние вещества, которое существует у определенных изотопов гелия, рубидия и лития, охлажденных до почти абсолютного нуля. Это состояние похоже на конденсат Бозе — Эйнштейна (бозе-эйнштейновский конденсат, БЭК), за несколькими отличиями. Некоторые БЭК сверхтекучи, а некоторые сверхтекучие состояния являются БЭК, но не все они идентичны.

Жидкий гелий известен своей сверхтекучестью. Когда гелий охлажден до «точки лямбда» в -270 градусов по Цельсию, часть жидкости становится сверхтекучей. Если охладить большую часть веществ до определенной точки, притяжение между атомами превосходит тепловые вибрации в веществе, позволяя им образовать твердую структуру. Но атомы гелия взаимодействуют между собой так слабо, что могут оставаться жидкими при температуре почти абсолютного нуля. Получается, при такой температуре характеристики отдельных атомов перекрываются, порождая странные свойства сверхтекучести.

У сверхтекучих веществ нет внутренней вязкости. Сверхтекучие вещества, помещенные в пробирку, начинают ползти вверх по бокам пробирки, казалось бы, нарушая законы гравитации и поверхностного натяжения. Жидкий гелий легко утекает, поскольку может проскользнуть даже через микроскопические отверстия. Сверхтекучесть также обладает странными термодинамическими свойствами. В таком состоянии вещества обладают нулевой термодинамической энтропией и бесконечной теплопроводностью. Это означает, что два сверхтекучих вещества не могут быть термально различны. Если добавить в сверхтекучее вещество тепла, оно проведет его так быстро, что образуются тепловые волны, не свойственные для обычных жидкостей.

Конденсат Бозе — Эйнштейна

Конденсат Бозе — Эйнштейна - это, наверное, одна из самых известных непонятных форм материи. Во-первых, нам нужно понять, что такое бозоны и фермионы. Фермион - это частица с полуцелым спином (например, электрон) или композитная частица (вроде протона). Эти частицы подчиняются принципу Паули, который позволяет существовать электронно-вырожденной материи. Бозон, однако, обладает полным целым спином, и одно квантовое состояние могут занимать несколько бозонов. Бозоны включают любые частицы-переносчики силы (вроде фотонов), а также некоторые атомы, включая гелий-4 и другие газы. Элементы в этой категории известны как бозонные атомы.

Говоря о последнем состоянии вещества в этом списке, рассмотрим состояние, с которого все началось: кварк-глюонная плазма. В ранней Вселенной состояние материи существенно отличалось от классического. Для начала немного предыстории.

Кварки - это элементарные частицы, которые мы находим внутри адронов (например, протонов и нейтронов). Адроны состоят либо из трех кварков, либо из одного кварка и одного антикварка. Кварки имеют дробные заряды и скрепляются глюонами, которые являются частицами обмена сильного ядерного взаимодействия.

Мы не видим свободные кварки в природе, но сразу после Большого Взрыва в течение миллисекунды свободные кварки и глюоны существовали. В течение этого времени температура Вселенной была настолько высокой, что кварки и глюоны двигались почти со скоростью света. Во время этого периода Вселенная состояла целиком и полностью из этой горячей кварк-глюонной плазмы. Спустя другую долю секунды Вселенная остыла достаточно, чтобы образовались тяжелые частицы вроде адронов, а кварки начали взаимодействовать между собой и глюонами. С этого момента началось образование известной нам Вселенной, и адроны начали связываться с электронами, создавая примитивные атомы.

Уже в современной Вселенной ученые пытались воссоздать кварк-глюонную плазму в больших ускорителях частиц. В процессе этих экспериментов тяжелые частицы вроде адронов сталкивались друг с другом, создавая температуру, при которой кварки отделялись на короткое время. В процессе этих экспериментов мы узнали много нового о свойствах кварк-глюонной плазмы, в которой совершенно отсутствовало трение и которая была больше похожа на жидкость, чем обычная плазма. Эксперименты с экзотическим состоянием материи позволяют нам узнавать много нового о том, как и почему наша Вселенная образовалась такой, какой мы ее знаем.

По материалам listverse.com

Выбор редакции
В зависимости от вида штрафа, в 1С 8.3 применяется различный порядок отражения в учете. Рассмотрим наиболее распространённые ситуации. На...

1. Для начала необходимо отобрать початки кукурузы. Они должны быть одинакового размера и не очень крупные. Именно поэтому лучше отдать...

Скумбрия тушеная — общие принципы приготовления Тушеная скумбрия – простое в приготовлении, вкусное и очень полезное блюдо. Для него не...

Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
С наступлением поста многие из нас задаются вполне обоснованными вопросами. Например, таким: «Можно ли есть в пост морепродукты?» Здесь...
Карп – один из символов водной стихии. Кроме того, эта рыба во многих культурах наделяется особыми свойствами. К примеру, на востоке...
Две недели назад 36-летняя Анастасия Мыскина объявила о расставании с гражданским мужем, политиком и бизнесменом Сергеем Мамедовым....
Почти у всех людей, изучающих английский язык, возникают трудности при изучении грамматики. И речь идет не только о понимании правил...