Ликвор, что это такое простыми словами. Лечение спинномозговой жидкости. Пути циркуляции спинномозговой жидкости Самым циркуляцию ликвора и становясь


Спинномозгова́я жидкость (цереброспина́льная жидкость, ли́квор) - жидкость, постоянно циркулирующая в желудочках головного мозга, ликворопроводящих путях, субарахноидальном (подпаутинном) пространстве головного и спинного мозга. Предохраняет головной и спинной мозг от механических воздействий, обеспечивает поддержание постоянного внутричерепного давления и водно-электролитного гомеостаза. Поддерживает трофические и обменные процессы между кровью и мозгом. Флуктуация ликвора оказывает влияние на вегетативную нервную систему. Основной объём цереброспинальной жидкости образуется путём активной секреции железистыми клетками сосудистых сплетений в желудочках головного мозга. Другим механизмом образования цереброспинальной жидкости является пропотевание плазмы крови через стенки кровеносных сосудов и эпендиму желудочков.

Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 - 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга.

Процесс ликворообращения в ЦНС включает 3 основных звена:

1). Продукцию (образование) ликвора.

2). Циркуляцию ликвора.

3). Отток ликвора.

Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 - 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме. Циркуляция ликвора происходит постоянно, из боковых желудочков мозга через отверстие Монро он поступает в III желудочек, а затем через Сильвиев водопровод оттекает в IV желудочек. Из IV желудочка, через отверстие Люшки и Мажанди, большая часть ликвора переходит в цистерны основания мозга (мозжечково-мозговую, охватывающую цистерны моста, межножковую цистерну, цистерну перекрёста зрительных нервов и другие). Достигает Сильвиевой (боковой) борозды и поднимается в субарахноидальное пространство конвекситольной поверхности полушарий головного мозга - это так называемый боковой путь циркуляции ликвора.

В настоящие время установлено, что существует и другой путь циркуляции цереброспинальной жидкости из мозжечково-мозговой цистерны в цистерны червя мозжечка, через охватывающую цистерну в субарахноидальное пространство медиальных отделов полушарий головного мозга - это так называемый центральный путь циркуляции ликвора. Меньшая часть ликвора из мозжечково-мозговой цистерны спускается каудально в субарахноидальное пространство спинного мозга, достигает конечной цистерны.

28-29. Спинной мозг, форма, топография. Основные отделы спинного мозга. Шейное и пояснично-крестцовое утолщения спинного мозга. Сегменты спинного мозга.Спинной мозг (лат. Medulla spinalis ) - каудальная часть (хвостовая) ЦНС позвоночных, расположенная в образованном невральными дугами позвонков позвоночном канале. Принято считать, что граница между спинным и головным мозгом проходит на уровне перекрёста пирамидных волокон (хотя эта граница весьма условна). Внутри спинного мозга имеется полость, называемая центральным каналом. Спинной мозг защищён мягкой , паутинной и твёрдой оболочками. Пространства между оболочками и канал заполнены спинномозговой жидкостью. Пространство между внешней твёрдой оболочкой и костью позвонков называется эпидуральным и заполнено жиром и венозной сетью. Шейное утолщение – нервы к рукам, крестцово – поясничное – к ногам. Шейный С1-С8 7 позвонков; Грудной Th1-Th12 12(11-13); Поясничный L1-L5 5(4-6); Крестцовый S1-S5 5(6); Копчиковый Со1 3-4.

30.Корешки спинномозговых нервов. Спинномозговые нервы. Концевая нить и конский хвост. Образование спинальных ганглиев. корешок спинномозгового нерва(radix nervi spinalis)-пучок нервных волокон, входящих и выходящих из какого либо сегмента спинного мозга и образующих спинномозговой нерв. Спинномозговые или спинальные нервы берут начало в спинном мозге и выходят из него между соседними позвонками почти по всей длине позоночника. В их состав входят и сенсорные нейроны, и моторные нейроны, поэтому их называют смешанными нервами. Смешанные нервы - нервы, передающие импульсы как от центральной нервной системы к периферии, так и в обратном направлении, например, тройничный, лицевой, языкоглоточный, блуждающий и все спинномозговые нервы. Спинно-мозговые нервы (31 пара) формируются из двух корешков, отходящих от спинного мозга - переднего корешка (эфферентного) и заднего (афферентного) , которые, соединяясь между собой в межпозвоночном отверстии, образуют ствол спинномозгового нерва См. рис. 8 . Спинно-мозговые нервы это 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый нерв. Спинно-мозговые нервы соответствуют сегментам спинного мозга. К заднему корешку прилежит чувствительный спинномозговой узел, образованный телами крупных афферентных Т-образных нейронов. Длинный отросток (дендрит) направляется на периферию, где заканчивается рецептором, а короткий аксон в составе заднего корешка входит в задние рога спинного мозга. Волокна обоих корешков (переднего и заднего) образуют смешанные спинно-мозговые нервы, содержащие чувствительные, двигательные и вегетативные (симпатические) волокна. Последние имеются не во всех боковых рогах спинного мозга, а только в VIII шейном, всех грудных и I - II поясничных нервах. В грудном отделе нервы сохраняют сегментарное строение (межреберные нервы), а в остальных соединяются друг с другом петлями, образуя сплетения: шейное, плечевое, поясничное, крестцовое и копчиковое, от которых отходят периферические нервы, иннервирующие кожу и скелетные мышцы (рис. 228). На передней (вентральной) поверхности спинного мозга залегает глубокая передняя срединная щель, по бокам которой находятся менее глубокие переднебоковые борозды. Из переднебоковой борозды или вблизи от нее выходят передние (вентральные) корешки спинномозговых нервов. Передние корешки содержат эфферентные волокна (центробежные) , которые являются отростками двигательных нейронов, проводящих импульсы к мышцам, железам и на периферию тела. На задней (дорсальной) поверхности хорошо видна задняя срединная борозда. По бокам от нее находятся заднебоковые борозды, в которые входят задние (чувствительные) корешки спинномозговых нервов. Задние корешки содержат афферентные (центростремительные) нервные волокна, проводящие чувствительные импульсы от всех тканей и органов тела в ЦНС. Задний корешок формирует спинномозговой ганглий (узел) , который представляет собой скопление тел псевдоуниполярных нейронов. Отойдя от такого нейрона, отросток Т-образно разделяется. Один из отростков - длинный - направляется на периферию в составе спинномозгового нерва и оканчивается чувствительным нервным окончанием. Другой отросток - короткий - следует в составе заднего корешка в спинной мозг. Спинномозговые ганглии (узлы) окружены твердой мозговой оболочкой и залегают внутри позвоночного канала в межпозвоночных отверстиях.

31.Внутренне строение спинного мозга. Серое вещество. Чувствительные и двигательные рога серого вещества спинного мозга. Ядра серого вещества спинного мозга. Спинной мозг состоит из серого вещества, образованного скоплением тел нейронов и их дендритов, и покрывающего его белого вещества, состоящего из нейритов.I. Серое вещество , занимает центральную часть спинного мозга и образует в нем две вертикальные колонны по одной в каждой половине, соединяющиеся серыми спайками (передней и задней). СЕРОЕ ВЕЩЕСТВО МОЗГА, нервная ткань темного цвета, из которой состоит КОРА ГОЛОВНОГО МОЗГА. Присутствует также в СПИННОМ МОЗГЕ. Отличается от так называемого белого вещества тем, что содержит больше нервных волокон (НЕЙРОНОВ) и большое количество беловатого изолирующего материала, называемого МИЕЛИН.
РОГА СЕРОГО ВЕЩЕСТВА.
В сером веществе каждой из боковых частей спинного мозга различают три выступа. На протяжении всего спинного мозга эти выступы образуют серые столбы. Выделяют передний, задний и боковой столбы серого вещества. Каждый из них на поперечном разрезе спинного мозга получает название соответственно

Переднего рога серого вещества спинного мозга,

Заднего рога серого вещества спинного мозга

Бокового рога серого вещества спинного мозга Передние рога серого вещества спинного мозга содержат крупные двигательные нейроны. Аксоны этих нейронов, выходя из спинного мозга, составляют передние (двигательные) корешки спинномозговых нервов. Тела двигательных нейронов образуют ядра эфферентных соматических нервов, иннервирующих скелетную мускулатуру (аутохтонная мускулатура спины, мышцы туловища и конечностей). При этом чем дистальнее расположены иннервируемые мышцы, тем латеральнее лежат иннервирующие их клетки.
Задние рога спинного мозга образованы относительно мелкими вставочными (переключательными, кондукторными) нейронами, которые воспринимают сигналы от чувствительных клеток, лежащих в спинномозговых ганглиях. Клетки задних рогов (вставочные нейроны) образуют отдельные группы, так называемые соматические чувствительные столбы. В боковых рогах находятся висцеральные моторные и чувствительные центры. Аксоны этих клеток проходят через передний рог спинного мозга и выходят из спинного мозга в составе передних корешков. ЯДРА СЕРОГО ВЕЩЕСТВА.
Внутреннее строение продолговатого мозга. Продолговатый мозг возник в связи с развитием органов гравитации и слуха, а также в связи с жаберным аппаратом, имеющим отношение к дыханию и кровообращению. Поэтому в нем заложены ядра серого вещества, имеющие отношение к равновесию, координации движений, а также к регуляции обмена веществ, дыхания и кровообращения.
1. Nucleus olivaris, ядро оливы, имеет вид извитой пластинки серого вещества, открытой медиально (hilus), и обусловливает снаружи выпячивание оливы. Оно связано с зубчатым ядром мозжечка и является промежуточным ядром равновесия, наиболее выраженным у человека, вертикальное положение которого нуждается в совершенном аппарате гравитации. (Встречается еще nucleus olivaris accessorius medialis.) 2. Formatio reticularis, ретикулярная формация, образующаяся из переплетения нервных волокон и лежащих между ними нервных клеток. 3. Ядра четырех пар нижних черепных нервов (XII -IX), имеющие отношение к иннервации производных жаберного аппарата и внутренностей. 4. Жизненно важные центры дыхания и кровообращения, связанные с ядрами блуждающего нерва. Поэтому при повреждении продолговатого мозга может наступить смерть.

32. Белое вещество спинного мозга: строение и функции.

Белое вещество спинного мозга представлено отростками нервных клеток, которые составляет тракты, или проводящие пути спинного мозга:

1) короткие пучки ассоциативных волокон, связывающие сегменты спинного мозга, расположенные на различных уровнях;

2) восходящие (афферентные, чувствительные) пучки, направляющиеся к центрам большого мозга и мозжечка;

3) нисходящие (эфферентные, двигательные) пучки, идущие от головного мозга к клеткам передних рогов спинного мозга.

Белое вещество спинного мозга располагается по периферии серого вещества спинного мозга и представляет собой совокупность миелинизированных и отчасти маломиелинизированных нервных волокон, собранных в пучки. В белом веществе спинного мозга расположены нисходящие волокна (идущие из головного мозга) и восходящие волокна, которые начинаются от нейронов спинного мозга и проходят в головной мозг. По нисходящим волокнам передается преимущественно информация от моторных центров головного мозга к мотонейронам (двигательным клеткам) спинного мозга. По восходящим волокнам поступает информация как от соматических, так и от висцеральных чувствительных нейронов. Расположение восходящих и нисходящих волокон носит закономерный характер. На спинной (дорсальной) стороне расположены преимущественно восходящие волокна, а на брюшной (вентральной) - нисходящие волокна.

Борозды спинного мозга разграничивают белое вещество каждой половины на передний канатик белого вещества спинного мозга, боковой канатик белого вещества спинного мозга и задний канатик белого вещества спинного мозга

Передний канатик ограничен передней срединной щелью и переднебоковой бороздой. Боковой канатик расположен между переднебоковой бороздой и заднебоковой бороздой. Задний канатик находится между задней срединной бороздой и заднебоковой бороздой спинного мозга.

Белое вещество обеих половин спинного мозга связано двумя комиссурами (спайками): дорсальной, лежащей под восходящими путями, и вентральной, находящейся рядом с моторными столбами серого вещества.

В составе белого вещества спинного мозга различают 3 группы волокон (3 системы проводящих путей):

Короткие пучки ассоциативных (межсегментных) волокон, связывающие участки спинного мозга на различных уровнях;

Длинные восходящие (афферентные, чувствительные) проводящие пути, которые идут от спинного мозга к головному;

Длинные нисходящие (эфферентные, двигательные) проводящие пути, идущие от головного мозга к спинному.

Самая распространенная жалоба, которую слышит врач от своих пациентов, - На нее жалуются и взрослые, и дети. Не обращать внимания на это нельзя. Особенно если при этом есть еще другие симптомы. Особое внимание следует обратить родителям на головные боли у ребенка и на поведение грудничка, ведь он не может сказать, что болит. Возможно, это последствия тяжелых родов или врожденные аномалии, что можно выяснить еще в раннем возрасте. Может, это ликвородинамические нарушения. Что это такое, какие есть характерные признаки этого заболевания у детей и взрослых и как лечить, рассмотрим далее.

Что значит ликвородинамические нарушения

Ликвор - это цереброспинальная жидкость, которая постоянно циркулирует в желудочках, ликворопроводящих путях и в субарахноидальном пространстве головного и спинного мозга. Ликвор играет большую роль в обменных процессах в центральной нервной системе, в поддержке гомеостаза в тканях мозга, а также создает определенную механическую защиту головному мозгу.

Ликвородинамические нарушения - это состояния, при которых нарушена циркуляция ликвора, его выделение и обратное процессы регулируются железами, которые расположены в сосудистых сплетениях желудочков мозга, вырабатывающих жидкость.

В нормальном состоянии организма состав спинномозговой жидкости и давление ее стабильны.

Каков механизм нарушений

Рассмотрим, как могут развиваться ликвородинамические нарушения головного мозга:

  1. Увеличивается скорость выработки и выделения ликвора сосудистыми сплетениями.
  2. Замедляется скорость всасывания ликвора из субарахноидального пространства из-за перекрытия сужения ликвророносных сосудов вследствие перенесенных субарахноидальных кровоизлияний или воспалительных
  3. Снижается скорость выработки ЦСЖ при нормальном процессе всасывания.

Скорость всасывания, выработки и выделения ликвора оказывает влияние:

  • На состояние церебральной гемодинамики.
  • Состояние гематоэнцефалического барьера.

Воспалительный процесс в головном мозге способствует увеличению его объема и повышению внутричерепного давления. Как результат - нарушение кровообращения и закупорка сосудов, по которым движется ликвор. Из-за накопления жидкости в полостях может начаться частичное отмирание внутричерепных тканей, а это приведет к развитию гидроцефалии.

Классификация нарушений

Ликвородинамические нарушения классифицируют по следующим направлениям:

  1. Как протекает патологический процесс:
  • Хроническое течение.
  • Острая фаза.

2. Стадии развития:

  • Прогрессирующая. Внутричерепное давление растет, и патологические процессы прогрессируют.
  • Компенсированная. Внутричерепное давление стабильное, но желудочки головного мозга остаются расширенными.
  • Субкомпенсированная. Большая опасность возникновения кризов. Нестабильное состояние. Давление может резко подняться в любой момент.

3. В какой полости мозга локализуется ликвор:

  • Внутрижелудочковая. Жидкость накапливается в желудочковой системе мозга из-за непроходимости ликворной системы.
  • Субарахноидальная. Ликвородинамические нарушения по наружному типу могут привести к деструктивным поражениям тканей головного мозга.
  • Смешанная.

4. В зависимости от давления ликвора:

  • Гипертензия. Характерно высокое внутричерепное давление. Нарушен отток спинномозговой жидкости.
  • Нормотензивная стадия. Давление внутричерепное в норме, но полость желудочков увеличена. Характерно такое состояние чаще всего в детском возрасте.
  • Гипотензия. После оперативного вмешательства избыточный отток ликвора из полостей желудочков.

Причины врожденные

Существуют врожденные аномалии, которые могут способствовать развитию ликвородинамических нарушений:

  • Генетические нарушения во
  • Агенезия мозолистого тела.
  • Синдром Денди-Уокера.
  • Синдром Арнольда-Киари.
  • Энцефалоцеле.
  • Стеноз водопровода мозга первичный или вторичный.
  • Порэнцефалические кисты.

Причины приобретенные

Ликвородинамические нарушения могут начать свое развитие по приобретенным причинам:

Симптомы ликвородинамических нарушений у взрослых

Ликвородинамические нарушения головного мозга у взрослых сопровождаются следующими симптомами:

  • Сильные головные боли.
  • Тошнота и рвота.
  • Быстрая утомляемость.
  • Горизонтальные глазных яблок.
  • Повышенный тонус, скованность мышц.
  • Судороги. Миоклонические припадки.
  • Нарушение речи. Интеллектуальные проблемы.

Симптоматика нарушений у грудных детей

Ликвородинамические нарушения у детей до года имеют следующие признаки:

  • Частые и обильные срыгивания.
  • Неожиданный плач без видимой причины.
  • Медленное зарастание родничка.
  • Монотонный плач.
  • Ребенок вялый, сонливый.
  • Сон нарушен.
  • Расхождение швов.

Со временем заболевание все более прогрессирует, и становятся более выражены признаки ликвородинамических нарушений:

  • Тремор подбородка.
  • Подергивание конечностей.
  • Непроизвольные вздрагивания.
  • Нарушены функции жизнеобеспечения.
  • Нарушения в работе внутренних органов без видимых причин.
  • Возможно косоглазие.

Визуально можно заметить сосудистую сетку в области носа, шеи, груди. При плаче или напряжении мышц она становится более выражена.

Также невролог может отметить такие признаки:

  • Гемиплегия.
  • Гипертонус разгибателей.
  • Менингеальные знаки.
  • Параличи и парезы.
  • Параплегия.
  • Симптом Грефе.
  • Нистагм горизонтальный.
  • Отставание в психомоторном развитии.

Следует регулярно посещать педиатра. На приеме врач измеряет объем головы, и в случае развития патологии будут заметны изменения. Так, могут быть такие отклонения в развитии черепа:

  • Быстро увеличивается голова.
  • Имеет неестественно вытянутую форму.
  • Большой и набухают и пульсируют.
  • Расходятся швы из-за высокого внутричерепного давления.

Все это признаки того, что развивается синдром ликвородинамических нарушений у грудничка. Прогрессирует гидроцефалия.

Хочется отметить, что у грудных детей сложно определить ликвородинамические кризы.

Признаки ликвородинамических нарушений у детей после года

У ребенка после года череп уже сформирован. Роднички полностью закрылись, и швы окостенели. Если имеются ликвородинамические нарушения у ребенка, появляются признаки повышенного внутричерепного давления.

Могут быть такие жалобы:

  • Головная боль.
  • Апатия.
  • Беспокойство без причины.
  • Тошнота.
  • Рвота, после которой не наступает облегчение.

А также характерны такие признаки:

  • Нарушается походка, речь.
  • Появляются нарушения в координации движений.
  • Падает зрение.
  • Горизонтальный нистагм.
  • В запущенном случае «качающаяся голова куклы».

А также, если ликвородинамические нарушения головного мозга прогрессируют, будут заметны такие отклонения:

  • Ребенок плохо разговаривает.
  • Используют стандартные, заученные фразы, не понимая их смысл.
  • Всегда в хорошем настроении.
  • Задержка полового развития.
  • Развивается судорожный синдром.
  • Ожирение.
  • Нарушения в работе эндокринной системы.
  • Отставание в учебном процессе.

Диагностика заболевания у детей

У детей до года диагностика прежде всего начинается с опроса матери и сбора сведений о том, как проходила беременность и роды. Далее учитываются жалобы и наблюдения родителей. Затем необходим осмотр ребенка такими специалистами:

  • Невролог.
  • Офтальмолог.

Для уточнения диагноза понадобится пройти следующие исследования:

  • Компьютерная томография.
  • Нейросонография.

Диагностика заболевания у взрослых

С головными болями и симптомами, описанными выше, необходимо обратиться к неврологу. Для уточнения диагноза и назначения лечения могут назначить следующие исследования:

  • Компьютерную томографию.
  • Ангиографию.
  • Пневмоэнцефалографию.
  • мозга.
  • ЯМРТ.

Если есть подозрение на синдром ликвородинамических нарушений, могут назначить поясничную пункцию с изменением ликворного давления.

При диагностике у взрослых большое внимание обращают на основное заболевание.

Лечение ликвородинамических нарушений

Чем раньше выявлено заболевание, тем больше шансов восстановить утраченные функции мозга. Вид лечения подбирают исходя из наличия патологических изменений протекания заболевания, а также из возраста пациента.

При наличии повышенного внутричерепного давления, как правило, назначают мочегонные препараты: «Фуросемид», «Диакарб». Применяют антибактериальные средства при лечении инфекционных процессов. Нормализация внутричерепного давления и его лечение - это главная задача.

Для снятия отеков и воспалительных процессов используют глюкокортикоидные препараты: «Преднизолон», «Дексаметазон».

Также для уменьшения отека мозга используют лекарства группы стероидов. Необходимо устранить причину, вызвавшую заболевание.

Как только выявлены ликвородинамические нарушения, лечение должно быть назначено незамедлительно. После прохождения комплексной терапии заметны положительные результаты. Особенно это важно в период развития ребенка. Речь улучшается, заметен прогресс в психомоторном развитии.

Также возможно хирургическое лечение. Оно может быть назначено в следующих случаях:

  • Медикаментозное лечение неэффективно.
  • Ликвородинамический криз.
  • Окклюзионная гидроцефалия.

Хирургическое лечение рассматривается для каждого случая заболевания отдельно с учетом возраста, особенностей организма и течения заболевания. В большинстве случаев оперативного вмешательства на головном мозге стараются избегать, чтобы не повредить здоровую ткань мозга, и применяют комплексное медикаментозное лечение.

Известно, если не лечить синдром ликвородинамических нарушений у ребенка, смертность составляет 50 % до 3 лет, до взрослого возраста доживает 20-30 % детей. После хирургического вмешательства смертность составляет 5-15 % больных детей.

Смертность повышается из-за несвоевременной постановки диагноза.

Профилактика ликвородинамических нарушений

К профилактическим мероприятиям можно отнести:

  • Наблюдение беременности в женской консультации. Очень важно встать на учет как можно раньше.
  • Своевременное выявление внутриутробных инфекций и их лечение.

На 18-20-й неделе УЗИ показывает развитие мозга плода и состояние ликвора будущего ребенка. На этом сроке можно определить наличие или отсутствие патологий.

  • Правильный выбор родоразрешения.
  • Регулярное наблюдение у педиатра. Измерение окружности черепа, если есть необходимость проводить исследование глазного дна.
  • Если своевременно не закрылся родничок, необходимо провести нейросонографию и проконсультироваться у нейрохирурга.
  • Своевременное удаление новообразований, которые купируют ликворные пути.
  • Регулярное наблюдение у врача и проведение необходимых исследований после перенесенных травм головного и спинного мозга.
  • Своевременное лечение инфекционных заболеваний.
  • Профилактика и терапия хронических заболеваний.
  • Отказаться от курения и алкоголя.
  • Рекомендуется заниматься спортом, вести активный образ жизни.

Любое заболевание легче предупредить или предпринять все меры, чтобы снизить риск развития патологии. Если диагностированы ликвородинамические нарушения, то чем раньше начата терапия, тем больше шансов, что ребенок будет развиваться нормально.

Спинномозговая жидкость (СМЖ) наполняет подпаутинные пространства головного и спинного мозга и мозговые желудочки. Небольшое количество ли- квора имеется под твердой мозговой оболочкой, в субдуральном пространстве. По своему составу СМЖ сходна только с эндо- и перилимфой внутреннего уха и водянистой влагой глаза, но существенно отличается от состава плазмы кро- ви, поэтому СМЖ нельзя считать ультрафильтратом крови.

Подпаутинное пространство (caritas subarachnoidalis) ограничено паутинной и мягкой (сосудистой) оболочками и представляет собой сплошное вместилище, окружающее головной и спинной мозг (рис. 2). Эта часть ликвороносных путей представляет собой внемозговой резервуар спинномозговой жидкости. Он тесно связан с системой периваскулярных, внеклеточных и периад-вентициальных щелей мягкой мозговой оболочки головного и спинного мозга и с внутренним (желудочковым) резервуаром. Внутренний - желудочковый - резервуар представлен желудочками головного мозга и центральным спинномозговым каналом. Система желудочков включает в себя два боковых желудочка, расположенных в правом и левом полушариях, III-й и IV-й. Желудочковая система и центральный канал спинного мозга - результат преобразования мозговой трубки и мозговых пузырей ромбовидного, среднего и переднего мозга.

Боковые желудочки расположены в глубине головного мозга. Полость правого и левого боковых желудочков имеет сложную форму, т.к. части желудочков располагаются во всех долях полушарий (кроме островка). Каждый желудочек имеет 3 отдела, так называемые рога: передний рог - cornu frontale (anterius) - в лобной доле; задний рог - cornu occipitale (posterius) - в затылоч-ной доле; нижний рог - cornu temporale (inferius) - в височной доле; центральная часть - pars centralis - соответствует теменной доле и связывает рога боковых желудочков (рис.3).

Рис. 2. Основные пути циркуляции ликвора (показаны стрелками) (по H.Davson, 1967): 1 - грануляции паутинной оболочки; 2 - боковой желудочек; 3- полушарие мозга; 4 - мозжечок; 5 - IV желудочек; 6- спинной мозг; 7 - спинальное подпаутинное пространство; 8 - корешки спинного мозга; 9 - сосудистое сплетение; 10 - намет мозжечха; 11- водопровод мозга; 12 - III желудочек; 13 - верхний сагиттальный синус; 14 - подпаутинное пространствоголовного мозга

Рис. 3. Желудочки мозга справа (слепок) (по Воробьеву): 1 - ventriculus lateralis; 2 - cornu frontale (anterius); 3- pars centrslis; 4 - cornu occipitale (posterius); 5 - cornu temporale (inferius); 6- foramen interventriculare (Monroi); 7 - ventriculus tertius; 8 - recessus pinealis; 9 - aqueductus mesencephali (Sylvii); 10 - ventriculus quartus; 11- apertura mediana ventriculi quarti (foramen Magendi); 12 - apertura lateralis ventriculi quarti (foramen Luschka) ; 13 - canalis centralis

Посредством парных межжелудочковых, отвергши -foramen interventriculare - боковые желудочки сообщаются с III-им. Последний с помощью водопровода мозга - aquneductus mesencephali (cerebri) или сильвиева водопровода - связан с IV-ым желудочком. Четвертый желудочек через 3 отверстия - срединную апертуру, apertura mediana, и 2 боковых апертуры, aperturae laterales - соединяется с подпаутинным пространством головного мозга (рис.4).

Циркуляция СМЖ схематично может быть представлена следующим образом: боковые желудочки > межжелудочковые отверстия > III желудочек > водопровод мозга > IV желудочек > срединная и боковые апертуры > цистерны мозга > субарахноидальное пространство головного и спинного мозга (рис. 5). Ликвор с наибольшей скоростью образуется в боковых желудочках головного мозга, создавая в них максимальное давление, что в свою очередь обу-словливает каудальное движение жидкости к отверстиям IV-гo желудочка. В желудочковый резервуар, помимо секреции ликвора сосудистым сплетением, возможна диффузия жидкости через эпендиму, выстилающую полости желудочков, а также и обратный ток жидкости из желудочков через эпендиму в межклеточные пространства, к клеткам мозга. С помощью новейших радиоизотопных методик обнаружено, что СМЖ в течение нескольких минут выводится из желудочков головного мозга, а затем в течение 4 - 8 часов переходит из цистерн основания мозга в подпаутинное пространство.

Циркуляция жидкости в подпаутинном пространстве происходит по специальной системе ликвороносных каналов и подпаутинных ячеек. Движения СМЖ в каналах усиливается под влиянием мышечных движений и при изменении положения тела. Наибольшая скорость движения ликвора отмечена в подпаутинном пространстве лобных долей. Считается, что часть СМЖ, находящейся в поясничном отделе подпаутинного пространства спинного мозга, в течение 1 часа перемещается краниально, в базальные цистерны головного мозга, хотя движение СМЖ в обоих направлениях также не исключается.

Анатомия ликворной системы

К ликворной системе относят желудочки мозга, цистерны основания мозга, спинальные субарахноидальные пространства, конвекситальные субарахноидальные пространства. Объем цереброспинальной жидкости (которую также принято называть ликвором) у здорового взрослого человека составляет 150-160 мл , при этом основным вместилищем ликвора являются цистерны.

Секреция ликвора

Ликвор секретируется в основном эпителием сосудистых сплетений боковых, III-го и IV-го желудочков . В то же время, резекция сосудистых сплетений, как правило, не излечивает гидроцефалию, что объясняют экстрахороидальной секрецией ликвора , которая до сих пор изучена очень плохо. Скорость секреции ликвора в физиологических условиях постоянна и составляет 0,3-0,45 мл/мин . Секреция ликвора – активный энергоёмкий процесс, ключевую роль в котором играют Na/K-АТФаза и карбоангидраза эпителия сосудистых сплетений . Скорость секреции ликвора зависит от перфузии сосудистых сплетений : она заметно падает при выраженной артериальной гипотонии, например, у больных в терминальных состояниях. В тоже время, даже резкое повышение внутричерепного давления не прекращает секрецию ликвора, таким образом, линейной зависимости секреции ликвора от церебрального перфузионного давления нет .

Клинически значимое снижение скорости секреции ликвора отмечается (1) при применении ацетазоламида (диакарба), который специфически ингибирует карбоангидразу сосудистых сплетений , (2) при применении кортикостероидов, которые ингибируют Na/K-АТФазу сосудистых сплетений , (3) При атрофии сосудистых сплетений в исходе воспалительных заболеваний ликворной системы, (4) после хирургической коагуляции или иссечения сосудистых сплетений . Скорость секреции ликвора значимо снижается с возрастом, что особенно заметно после 50-60 лет .

Клинически значимое увеличение скорости секреции ликвора отмечается (1) при гиперплазии или опухолях сосудистых сплетений (хориоидпапиллома), в этом случае избыточная секреция ликвора может стать причиной редкой гиперсекреторной формы гидроцефалии ; (2) при текущих воспалительных заболеваниях ликворной системы (менингит, вентрикулит) .

Кроме этого, в клинически незначительных пределах секреция ликвора регулируется симпатической нервной системой (симпатическая активация и применение симпатомиметиков снижают секрецию ликвора ), а также посредством различных эндокринных влияний .

Циркуляция ликвора

Циркуляцией называют перемещение ликвора в пределах ликворной системы. Различают быстрые и медленные перемещения ликвора. Быстрые перемещения ликвора носят осциллирующий характер и возникают в результате изменения кровенаполнения мозга и артериальных сосудов в цистернах основания в течение сердечного цикла: в систолу их кровенаполнение увеличивается, и избыточный объем ликвора вытесняется из ригидной полости черепа в растяжимый спинальный дуральный мешок; в диастолу ликвороток направлен из спинального субарахноидального пространства вверх, в цистерны и желудочки мозга. Линейная скорость быстрых перемещений ликвора в водопроводе мозга составляет 3-8 см/сек , объемная скорость ликворотока - до 0,2-0,3 мл/сек . С возрастом пульсовые перемещения ликвора ослабевают пропорционально редукции церебрального кровотока . Медленные перемещения ликвора связаны с его непрекращающейся секрецией и резорбцией, и потому имеют однонаправленный характер: из желудочков в цистерны и далее в субарахноидальные пространства к местам резорбции. Объемная скорость медленных перемещений ликвора равна скорости его секреции и резорбции, то есть 0,005-0,0075 мл/сек, что в 60 раз медленнее быстрых перемещений.

Затруднение циркуляции ликвора является причиной обструктивной гидроцефалии и наблюдается при опухолях, поствоспалительных изменениях эпендимы и паутинной оболочки, а также при аномалиях развития головного мозга. Некоторые авторы обращают внимание на то, что по формальным признакам наряду с внутренней гидроцефалией к категории обструктивной можно относить и случаи так называемой экстравентрикулярной (цистернальной) обструкции . Целесообразность такого подхода сомнительна, поскольку клинические проявления, рентгенологическая картина и, главное, лечение при «цистернальной обструкции» аналогичны таковым при «открытой» гидроцефалии.

Резорбция ликвора и сопротивление резорбции ликвора

Резорбция – процесс возврата цереброспинальной жидкости из ликворной системы в кровеносную систему, а именно, в венозное русло. Анатомически основным местом резорбции ликвора у человека являются конвекситальные субарахноидальные пространства в окрестностях верхнего сагиттального синуса. Альтернативные пути резорбции ликвора (по ходу корешков спинномозговых нервов, сквозь эпендиму желудочков) у человека имеют значение у младенцев, а позже лишь в условиях патологии . Так трансэпендимарная резорбция возникает при обструкции ликворных путей под водействием повышенного внутрижелудочкового давления, признаки трансэпендимарной резорбции видны по данным КТ и МРТ в виде перивентрикулярного отека (рис. 1, 3).

Пациент А., 15 лет. Причина гидроцефалии - опухоль среднего мозга и подкорковых образований слева (фибриллярная астроцитома). Обследован в связи с прогрессирующими нарушениями движения в правых конечностях. У пациента имелись застойные диски зрительных нервов. Окружность головы 55 сантиметров (возрастная норма). А – МРТ исследование в режиме Т2, выполненное до лечения. Выявляется опухоль среднего мозга и подкорковых узлов, вызывающая обструкцию ликворных путей на уровне водопровода мозга, боковые и III желудочки расширены, контур передних рогов нечеткий («перивентрикулярный отек»). Б – МРТ исследование головного мозга в режиме Т2, выполненное спустя 1 год после эндоскопической вентрикулостомии III желудочка. Желудочки и конвекситальные субарахноидальные пространства не расширены, контуры передних рогов боковых желудочков четкие. При контрольном обследовании клинических признаков внутричерепной гипертензии, включая изменения на глазном дне, не выявлялось.

Пациент Б, 8 лет. Комплексная форма гидроцефалии, обусловленная внутриутробной инфекцией и стенозом водопровода мозга. Обследован в связи с прогрессирующими расстройствами статики, походки и координации, прогрессирующей макрокранией. На момент постановки диагноза имелись выраженные признаки внутричерепной гипертензии на глазном дне. Окружность головы 62,5 см (значительно больше возрастной нормы). А – Данные МРТ исследования головного мозга в режиме Т2 до операции. Имеется резко выраженное расширение боковых и 3 желудочков, в области передних и задних рогов боковых желудочков виден перивентрикулярный отек, конвекситальные субарахноидальные пространства компримированы. Б – данные КТ головного мозга спустя 2 недели после хирургического лечения – вентрикулоперитонеостомии регулируемым клапаном с антисифонным устройством, пропускная способность клапана установлена на среднее давление (performance level 1,5). Видно заметное уменьшение размеров желудочковой системы. Резко расширенные конвекситальные субарахноидальные пространства указывают на избыточное дренирование ликвора по шунту. В – данные КТ головного мозга спустя 4 недели после хирургического лечения, пропускная способность клапана установлена на очень высокое давление (performance level 2,5). Размеры желудочков мозга лишь немногим уже предоперационных, конвекситальные субарахноидальные пространства визуализируются, но не расширены. Перивентрикулярного отека нет. При осмотре нейроофтальмолога спустя месяц после операции отмечен регресс застойных дисков зрительных нервов. В катамнезе отмечено уменьшение выраженности всех жалоб.

Аппарат резорбции ликвора представлен арахноидальными грануляциями и ворсинами , он обеспечивает однонаправленное движение ликвора из субарахноидальных пространств в венозную систему. Другими словами, при снижении ликворного давления ниже венозного обратного движения жидкости из венозного русла в субарахноидальные пространства не возникает .

Скорость резорбции ликвора пропорциональна градиенту давления между ликворной и венозной системой, при этом коэффициент пропорциональности характеризует гидродинамическое сопротивление аппарата резорбции, этот коэффициент называют сопротивлением резорбции ликвора (Rcsf). Исследование сопротивления резорбции ликвора бывает важным при диагностике нормотензивной гидроцефалии, его измеряют с помощью люмбального инфузионного теста . При проведении вентрикулярного инфузионного теста этот же параметр называют сопротивлением оттоку ликвора (Rout). Сопротивление резорбции (оттоку) ликвора, как правило, бывает повышенным при гидроцефалии, в отличие от атрофии мозга и краниоцеребральной диспропорции. У здорового взрослого человека сопротивление резорбции ликвора составляет 6-10 мм.рт.ст/(мл/мин), постепенно увеличиваясь с возрастом . Патологическим считают увеличение Rcsf выше 12 мм.рт.ст/(мл/мин).

Венозный отток из полости черепа

Венозный отток из полости черепа осуществляется через венозные синусы твердой мозговой оболочки, откуда кровь попадает в яремные и затем в верхнюю полую вену. Затруднение венозного оттока из полости черепа с повышением внутрисинусного давления приводит к замедлению резорбции ликвора и повышению внутричерепного давления без вентрикуломегалии. Это состояние известно под названием «pseudotumor cerebri» или «доброкачественная внутричерепная гипертензия» .

Внутричерепное давление, колебания внутричерепного давления

Внутричерепное давление - манометрическое давление в полости черепа. Внутричерепное давление сильно зависит от положения тела: в положении лежа у здорового человека оно составляет от 5 до 15 мм рт.ст., в положении стоя - от -5 до +5 мм рт.ст. . В отсутствие разобщения ликворных путей люмбальное ликворное давление в положении лежа равно внутричерепному, при переходе в положение стоя оно увеличивается. На уровне 3-го грудного позвонка при перемене положения тела ликворное давление не меняется . При обструкции ликворных путей (обструктивная гидроцефалия, мальформация Киари) внутричерепное давление при переходе в положение стоя не падает столь значительно, а иногда даже возрастает . После эндоскопической вентрикулостомии ортостатические колебания внутричерепного давления, как правило, приходят в норму . После шунтирующих операций ортостатические колебания внутричерепного давления редко соответствуют норме здорового человека: чаще всего имеется склонность к низким цифрам внутричерепного давления, особенно в положении стоя . В современных шунтирующих системах используется множество приспособлений, призванных решить эту проблему.

Внутричерепное давление в покое в положении лежа наиболее точно описывается модифицированной формулой Davson:

ВЧД = (F * Rcsf) + Pss + ВЧДв,

где ВЧД - внутричерепное давление, F - скорость секреции ликвора, Rcsf - сопротивление резорбции ликвора, ВЧДв - вазогенный компонент внутричерепного давления . Внутричерепное давление в положение лежа не постоянно, колебания внутричерепного давления определяются в основном изменениями вазогенного компонента.

Пациент Ж., 13 лет. Причина гидроцефалии – небольшая глиома четверохолмной пластинки. Обследован в связи с единственным пароксизмальным состоянием, которое можно было интерпретировать как сложный парциальный эпилептический приступ или как окклюзионный приступ. У пациента не было признаков внутричерепной гипертензии на глазном дне. Окружность головы 56 см (возрастная норма). А – данные МРТ исследования головного мозга в режиме Т2 и четырехчасового ночного мониторинга внутричерепного давления до лечения. Имеет место расширение боковых желудочков, конвекситальные субарахноидальные пространства не прослеживаются. Внутричерепное давление (ICP) не повышено (в среднем 15,5 мм рт ст. за время мониторинга), амплитуда пульсовых колебаний внутричерепного давления (CSFPP) повышена (в среднем 6,5 мм рт.ст. за время мониторинга). Видны вазогенные волны ВЧД с пиковыми значениями ВЧД до 40 мм рт ст. Б - данные МРТ исследования головного мозга в режиме Т2 и четырехчасового ночного мониторинга внутричерепного давления спустя неделю после эндоскопической вентрикулостомии 3 желудочка. Размеры желудочков уже, чем до операции, но сохраняется вентрикуломегалия. Конвекситальные субарахноидальные пространства прослеживаются, контур боковых желудочков четкий. Внутричерепное давление (ICP) на предоперационном уровне (в среднем 15,3 мм рт.ст. за время мониторинга), амплитуда пульсовых колебаний внутричерепного давления (CSFPP) снизилась (в среднем 3,7 мм рт.ст. за время мониторинга). Пиковые значение ВЧД на высоте вазогенных волн уменьшились до 30 мм рт ст. При контрольном обследовании спустя год после операции состояние пациента было удовлетворительным, никаких жалоб не было.

Различают следующие колебания внутричерепного давления:

  1. пульсовые волны ВЧД, частота которых соответствует частоте пульса (период 0,3-1,2 секунды), они возникают в результате изменения артериального кровенаполнения мозга в течение сердечного цикла, в норме их амплитуда не превышает 4 мм рт.ст. (в покое). Изучение пульсовых волн ВЧД используется при диагностике нормотензивной гидроцефалии ;
  2. дыхательные волны ВЧД, частота которых соответствует частоте дыхания (период 3-7,5 секунд), возникают в результате изменения венозного кровенаполнения мозга в течение дыхательного цикла, в диагностике гидроцефалии не используются, предложено их использование для оценки краниовертебральных объемных отношений при черепно-мозговой травме ;
  3. вазогенные волны внутричерепного давления (Рис. 2) - физиологический феномен, природа которого изучена плохо. Представляют собой плавные подъемы внутричерепного давления на 10-20 мм рт.ст. от базального уровня с последующим плавным возвращением к исходным цифрам, продолжительность одной волны составляет 5-40 минут, период 1-3 часа. По-видимому, существует несколько разновидностей вазогенных волн обусловленных действием различных физиологических механизмов . Патологическим является отсутствие вазогенных волн по данным мониторинга внутричерепного давления, что встречается при атрофии мозга, в отличие от гидроцефалии и краниоцеребральной диспропорции (так называемая «монотонная кривая внутричерепного давления»).
  4. B-волны - условно патологические медленные волны внутричерепного давления амплитудой 1-5 мм рт.ст., период от 20 секунд до 3 минут, частота их бывает повышена при гидроцефалии , однако специфичность B-волн для диагностики гидроцефалии низка , в связи с чем в настоящее время исследование В-волн для диагностики гидроцефалии не используется.
  5. плато-волны абсолютно патологические волны внутричерепного давления, представляют внезапные быстрые длительные, на несколько десятков минут, повышения внутричерепного давления до 50-100 мм рт.ст. с последующим быстрым возвращением к базальному уровню. В отличие от вазогенных волн, на высоте плато-волн прямая зависимость между внутричерепным давлением и амплитудой его пульсовых колебаний отсутствует, а иногда даже меняется на обратную, снижается церебральное перфузионное давление, нарушается ауторегуляция церебрального кровотока . Плато-волны свидетельствуют о крайнем истощении механизмов компенсации повышенного внутричерепного давления, как правило, наблюдаются лишь при внутричерепной гипертензии.

Разнообразные колебания внутричерепного давления, как правило, не позволяют однозначно интерпретировать результаты одномоментного измерения ликворного давления как патологические или физиологические. У взрослых внутричерепной гипертензией называют повышение среднего внутричерепного давления выше 18 мм рт.ст. по данным длительного мониторинга (не менее 1 часа, но предпочтителен ночной мониторинг) . Наличие внутричерепной гипертензии отличает гипертензивную гидроцефалию от нормотензивной (Рис 1, 2, 3). Следует иметь в виду, что внутричерепная гипертензия может быть субклинической, т.е. не иметь специфических клинических проявлений, например таких, как застойные диски зрительных нервов .

Доктрина Monroe-Kellie и упругость

Доктрина Monroe-Kellie рассматривает полость черепа как замкнутую абсолютно нерастяжимую емкость, заполненную тремя абсолютно несжимаемыми средами: ликвором (в норме - 10% объема полости черепа), кровью в сосудистом русле (в норме около 10% объема полости черепа) и мозгом (в норме 80% объема полости черепа). Увеличение объема любой из составляющих возможно лишь за счет перемещения за пределы полости черепа других составляющих. Так, в систолу при увеличении объема артериальной крови ликвор вытесняется в растяжимый спинальный дуральный мешок, а венозная кровь из вен мозга вытесняется в дуральные синусы и далее за пределы полости черепа; в диастолу ликвор возвращается из спинальных субарахноидальных пространств в интракраниальные, а церебральное венозное русло вновь заполняется . Все эти перемещения не могут свершиться моментально, поэтому, прежде чем они произойдут, приток артериальной крови в полость черепа (равно, как и моментальное введение любого другого упругого объема) приводит повышению внутричерепного давления. Степень повышения внутричерепного давления при введении в полость черепа заданного дополнительного абсолютно несжимаемого объема называется упругостью (E от англ. elastance), она измеряется в мм.рт.ст/мл. Упругость напрямую влияет на амплитуду пульсовых колебаний внутричерепного давления и характеризует компенсаторные возможности ликворной системы . Ясно, что медленное (в течение нескольких минут, часов или дней) введение дополнительного объема в ликворные пространства приведет к заметно менее выраженному повышению внутричерепного давления, чем быстрое введение того же объема. В физиологических условиях при медленном введении дополнительного объема в полость черепа степень повышения внутричерепного давления определяется в основном растяжимостью спинального дурального мешка и объемом церебрального венозного русла, а если речь идет о введении жидкости в ликворную систему (как это имеет место при проведении инфузионного теста с медленной инфузией), то на степень и скорость повышения внутричерепного давления влияет также скорость резорбции ликвора в венозное русло .

Упругость бывает повышена (1) при нарушении перемещения ликвора в пределах субарахноидальных пространств, в частности, при изоляции интракраниальных ликворных пространств от спинального дурального мешка (мальформация Киари, отек мозга после черепно-мозговой травмы, синдром щелевидных желудочков после шунтирующих операций); (2) при затруднении венозного оттока из полости черепа (доброкачественная внутричерепная гипертензия); (3) при уменьшении объема полости черепа (краниостеноз); (4) при появлении дополнительного объема в полости черепа (опухоль, острая гидроцефалия в отсутствие атрофии мозга); 5) при повышении внутричерепного давления .

Низкие значения упругости должны иметь место (1) при увеличении объема полости черепа; (2) при наличии костных дефектов свода черепа (например, после черепно мозговой травмы или резекционной трепанации черепа, при открытых родничках и швах в младенческом возрасте); (3) при увеличении объема церебрального венозного русла, как это бывает при медленно прогрессирующей гидроцефалии; (4) при понижении внутричерепного давления.

Взаимосвязь параметров ликвородинамики и церебрального кровотока

Перфузия ткани мозга в норме составляет около 0,5 мл/(г*мин) . Ауторегуляция - способность поддерживать церебральный кровоток на постоянном уровне вне зависимости от церебрального перфузионного давления. При гидроцефалии нарушения ликвородинамики (внутричерепная гипертензия и усиленная пульсация ликвора) приводят к снижению перфузии мозга и нарушению ауторегуляции церебрального кровотока (отсутствует реакция в пробе с СО2, О2, ацетазоламидом); при этом нормализация параметров ликвородинамики посредством дозированного выведения ликвора приводит к немедленному улучшению церебральной перфузии и ауторегуляции церебрального кровотока . Это имеет место как при гипертензивной , так и при нормотензивной гидроцефалии . В отличие от этого, при атрофии мозга, в тех случаях, когда имеются нарушения перфузии и ауторегуляции, в ответ на выведение ликвора их улучшения не происходит .

Механизмы страдания мозга при гидроцефалии

Параметры ликвородинамики влияют на работу мозга при гидроцефалии в основном опосредованно через нарушение перфузии. Кроме того, считают, что повреждение проводящих путей отчасти бывает обусловлено их перерастяжением . Распространено мнение, что основной непосредственной причиной снижения перфузии при гидроцефалии является внутричерепное давление. Вопреки этому, есть основания полагать, что не меньший, а возможно и больший вклад в нарушение церебрального кровообращения вносит повышение амплитуды пульсовых колебаний внутричерепного давления, отражающее повышенную упругость .

При остром заболевании гипоперфузия вызывает, в основном, лишь функциональные изменения церебрального метаболизма (нарушение энергообмена, снижение уровней фосфокреатинина и АТФ, повышение содержания неорганических фосфатов и лактата), и в этой ситуации все симптомы обратимы . При длительной болезни в результате хронической гипоперфузии в мозге возникают необратимые изменения: повреждение эндотелия сосудов и нарушение гематоэнцефалического барьера , повреждение аксонов вплоть до их дегенерации и исчезновения, демиелинизация. У младенцев нарушается миелинизация и этапность формирования проводящих путей головного мозга . Повреждения нейронов обычно менее значительны и возникают в более поздних стадиях гидроцефалии. При этом можно отметить как микроструктурные изменения нейронов, так и уменьшение их количества . В поздних стадиях гидроцефалии отмечается редукция капиллярной сосудистой сети головного мозга . При длительном течении гидроцефалии всё вышеперечисленное в конечном итоге приводит к глиозу и уменьшению массы мозга, то есть к его атрофии. Хирургическое лечение приводит к улучшению кровотока и метаболизма нейронов, восстановлению миелиновых оболочек и микроструктурных повреждений нейронов, однако количество нейронов и поврежденных нервных волокон заметно не меняется, глиоз также сохраняется после лечения . Поэтому при хронической гидроцефалии значительная часть симптомов оказывается необратимой. Если гидроцефалия возникает в младенчестве, то нарушение миелинизации и этапности созревания проводящих путей также ведут к необратимым последствиям.

Непосредственная связь сопротивления резорбции ликвора с клиническими проявлениями не доказана, однако, некоторые авторы предполагают, что замедление циркуляции ликвора, ассоциированное с повышением сопротивления резорбции ликвора, может приводить к накоплению в ликворе токсических метаболитов и таким образом негативно влиять на работу мозга .

Определение гидроцефалии и классификация состояний с вентрикуломегалией

Вентрикуломегалия - расширение желудочков мозга. Вентрикуломегалия всегда имеет место при гидроцефалии, но встречается также и в ситуациях, не требующих хирургического лечения: при атрофии мозга и при краниоцеребральной диспропорции. Гидроцефалия - увеличение объема ликворных пространств, обусловленное нарушением ликвороциркуляции . Отличительные черты этих состояний суммированы в таблице 1 и проиллюстрированы рисунками 1-4. Приведенная классификация в значительной степени условна, поскольку перечисленные состояния зачастую сочетаются друг с другом в различных комбинациях.

Классификация состояний с вентрикуломегалией

Атрофия - уменьшение объема мозговой ткани, не связанное с компрессией извне. Атрофия мозга может быть изолированной (старческий возраст, нейродегенеративные заболевания), но кроме этого в той или иной степени атрофия имеет место у всех пациентов с хронической гидроцефалией (рис. 2-4).

Больной К, 17 лет. Обследован спустя 9 лет после тяжелой черепно-мозговой травмы в связи с появившимися в течение 3 лет жалобами на головные боли, эпизоды головокружения, эпизоды вегетативной дисфункции в виде ощущения приливов. На глазном дне признаков внутричерепной гипертензии нет. А – данные МРТ головного мозга. Имеет место выраженное расширение боковых и 3 желудочков, перивентрикулярного отека нет, субарахноидальные щели прослеживаются, но умеренно задавлены. Б – данные 8-часового мониторинга внутричерепного давления. Внутричерепное давление (ICP) не повышено, составляет в среднем 1,4 мм рт.ст., амплитуда пульсовых колебаний внутричерепного давления (CSFPP) не повышена, составляет в среднем 3,3 мм рт.ст. В – данные люмбального инфузионного теста с постоянной скоростью инфузии 1,5 мл/мин. Серым выделен период субарахноидальной инфузии. Сопротивление резорбции ликвора (Rout) не повышено и составляет 4,8 мм рт.ст./(мл/мин). Г – результаты инвазивных исследований ликвородинамики. Таким образом, имеют место посттравматическая атрофия головного мозга и краниоцеребральная диспропорция; показаний к хирургическому лечению нет.

Краниоцеребральная диспропорция - несоотвествие размеров полости черепа размерам головного мозга (избыточный объем полости черепа). Краниоцеребральная диспропорция возникает вследствие атрофии мозга, макрокрании, а также после удаления крупных опухолей мозга, особенно доброкачественных. Краниоцеребральная диспропорция также лишь изредка встречается в чистом виде, чаще она сопровождает хроническую гидроцефалию и макрокранию. Она не требует лечения сама по себе, однако ее наличие нужно учитывать при лечении пациентов с хронической гидроцефалией (рис. 2-3).

Заключение

В этой работе, на основе данных современной литературы и собственного клинического опыта автора в доступной и сжатой форме представлены основные физиологические и патофизиологические концепции, используемые при диагностике и лечении гидроцефалии.

Библиография

  1. Барон М.А. и Майорова Н.А. Функциональная стереоморфология мозговых оболочек, М., 1982
  2. Коршунов А. Е. Программируемые шунтирующие системы в лечении гидроцефалии. Ж. Вопр. Нейрохир. им. Н.Н. Бурденко. 2003(3):36-39.
  3. Коршунов АЕ, Шахнович АР, Меликян АГ, Арутюнов НВ, Кудрявцев ИЮ.Ликвородинамика при хронической обструктивной гидроцефалии до и после успешной эндоскопической вентрикулостомии III желудочка. Ж. Вопр. Нейрохир. им. Н.Н. Бурденко. 2008(4):17-23; обуждение 24.
  4. Шахнович А.Р., Шахнович В.А. Гидроцефалия и внутричерепная гипертензия. Отек и набухание мозга. Гл. в кн. «Диагностика нарушений мозгового кровообращения: транскраниальная допплерография» Москва:1996, С290-407.
  5. Шевчиковский Е, Шахнович АР, Коновалов АН, Томас ДГ, Корсак-Сливка И. Использование ЭВМ для интенсивного наблюдения за состоянием больных в нейрохирургической клинике. Ж Вопр Нейрохир им. Н.Н. Бурденко 1980; 6-16.
  6. Albeck MJ, Skak C, Nielsen PR, Olsen KS, Bшrgesen SE, Gjerris F.Age dependency of resistance to cerebrospinal fluid outflow.J Neurosurg. 1998 Aug;89(2):275-8.
  7. Avezaat CJ, van Eijndhoven JH. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien) 1986; 79:13-29.
  8. Barkhof F, Kouwenhoven M, Scheltens P, Sprenger M, Algra P, Valk J. Phase-contrast cine MR imaging of normal aqueductal CSF flow. Effect of aging and relation to CSF void on modulus MR. Acta Radiol. 1994 Mar;35(2):123-30.
  9. Bauer DF, Tubbs RS, Acakpo-Satchivi L.Mycoplasma meningitis resulting in increased production of cerebrospinal fluid: case report and review of the literature. Childs Nerv Syst. 2008 Jul;24(7):859-62. Epub 2008 Feb 28. Review.
  10. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999 Jul;19(7):701-35.
  11. Catala M. Developement of the Cerebrospinal Fluid Pathways During Embryonic and Fetal Life in Humans. in Cinally G., "Pediatric Hydrocephalus" edited by Maixner W.J., Sainte-Rose C. Springer-Verlag Italia, Milano 2004, pp.19-45.
  12. Carey ME, Vela AR. Effect of systemic arterial hypotension on the rate of cerebrospinal fluid formation in dogs. J Neurosurg. 1974 Sep;41(3):350-5.
  13. Carrion E, Hertzog JH, Medlock MD, Hauser GJ, Dalton HJ. Use of acetazolamide to decrease cerebrospinal fluid production in chronically ventilated patients with ventriculopleural shunts. Arch Dis Child. 2001 Jan;84(1):68-71.
  14. Castejon OJ. Transmission electron microscope study of human hydrocephalic cerebral cortex. J Submicrosc Cytol Pathol. 1994 Jan;26(1):29-39.
  15. Chang CC, Asada H, Mimura T, Suzuki S. A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg. 2009 Sep;111(3):610-7.
  16. Chapman PH, Cosman ER, Arnold MA.The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study.Neurosurgery. 1990 Feb;26(2):181-9.
  17. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997 Dec;63(6):721-31.
  18. Czosnyka M, Smielewski P, Piechnik S, Schmidt EA, Al-Rawi PG, Kirkpatrick PJ, Pickard JD. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999 Jul;91(1):11-9.
  19. Czosnyka M., Czosnyka Z.H., Whitfield P.C., Pickard J.D. Cerebrospinal Fluid Dynamics. in Cinally G., "Pediatric Hydrocephalus" edited by Maixner W.J., Sainte-Rose C. Springer-Verlag Italia, Milano 2004, pp47-63.
  20. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004 Jun;75(6):813-21.
  21. Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, Pickard JD. Intracranial pressure: more than a number. Neurosurg Focus. 2007 May 15;22(5):E10.
  22. Da Silva M.C. Pathophysiology of hydrocephalus. in Cinally G., "Pediatric Hydrocephalus" edited by Maixner W.J., Sainte-Rose C. Springer-Verlag Italia, Milano 2004, pp65-77.
  23. Dandy W.E. Extirpation of the choroid plexus of the lateral ventricles. Ann Surg 68:569-579, 1918
  24. Davson H., Welch K., Segal M.B. The physiology and pathophysiology of cerebrospinal fluid. Churchill Livingstone, New York, 1987.
  25. Del Bigio MR, da Silva MC, Drake JM, Tuor UI. Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci. 1994 Nov;21(4):299-305.
  26. Eide PK, Brean A. Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2006; 148:1151-6.
  27. Eide PK, Egge A, Due-Tшnnessen BJ, Helseth E. Is intracranial pressure waveform analysis useful in the management of pediatric neurosurgical patients? Pediatr Neurosurg. 2007;43(6):472-81.
  28. Eklund A, Smielewski P, Chambers I, Alperin N, Malm J, Czosnyka M, Marmarou A. Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput. 2007 Aug;45(8):719-35. Epub 2007 Jul 17. Review.
  29. Ekstedt J. CSF hydrodynamic studies in man. 2 . Normal hydrodynamic variables related to CSF pressure and flow.J Neurol Neurosurg Psychiatry. 1978 Apr;41(4):345-53.
  30. Fishman RA. Cerebrospinal fluid in diseases of the central nervous system. 2 ed. Phyladelphia: W.B. Saunders Company, 1992
  31. Janny P: La Pression Intracranienne Chez l"Homme. Thesis. Paris: 1950
  32. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008 May 14;5:10.
  33. Jones HC, Bucknall RM, Harris NG. The cerebral cortex in congenital hydrocephalus in the H-Tx rat: a quantitative light microscopy study. Acta Neuropathol. 1991;82(3):217-24.
  34. Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ: Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 46:198–202, 1996
  35. Lee GH, Lee HK, Kim JK et al. CSF Flow Quantification of the Cerebral Aqueduct in Normal Volunteers Using Phase Contrast Cine MR Imaging Korean J Radiol. 2004 Apr–Jun; 5(2): 81–86.
  36. Lindvall M, Edvinsson L, Owman C. Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science. 1978 Jul 14;201(4351):176-8.
  37. Lindvall-Axelsson M, Hedner P, Owman C. Corticosteroid action on choroid plexus: reduction in Na+-K+-ATPase activity, choline transport capacity, and rate of CSF formation. Exp Brain Res. 1989;77(3):605-10.
  38. Lundberg N: Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psych Neurol Scand; 36(Suppl 149):1–193, 1960.
  39. Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975 Nov;43(5):523-34.
  40. Marmarou A, Maset AL, Ward JD, Choi S, Brooks D, Lutz HA, et al. Contribution of CSF and vascular factors to elevation of ICP in severely head- injured patients. J Neurosurg 1987; 66:883-90.
  41. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005 Sep;57(3 Suppl):S17-28; discussion ii-v. Review.
  42. May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990 Mar;40(3 Pt 1):500-3.
  43. Meyer JS, Tachibana H, Hardenberg JP, Dowell RE Jr, Kitagawa Y, Mortel KF. Normal pressure hydrocephalus. Influences on cerebral hemodynamic and cerebrospinal fluid pressure--chemical autoregulation. Surg Neurol. 1984 Feb;21(2):195-203.
  44. Milhorat TH, Hammock MK, Davis DA, Fenstermacher JD. Choroid plexus papilloma. I. Proof of cerebrospinal fluid overproduction. Childs Brain. 1976;2(5):273-89.
  45. Milhorat TH, Hammock MK, Fenstermacher JD, Levin VA.Cerebrospinal fluid production by the choroid plexus and brain. Science. 1971 Jul 23;173(994):330-2.
  46. Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD.Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004 May;127(Pt 5):965-72. Epub 2004 Mar 19.
  47. Mori K, Maeda M, Asegawa S, Iwata J. Quantitative local cerebral blood flow change after cerebrospinal fluid removal in patients with normal pressure hydrocephalus measured by a double injection method with N-isopropyl-p-[(123)I] iodoamphetamine.Acta Neurochir (Wien). 2002 Mar;144(3):255-62; discussion 262-3.
  48. Nakada J, Oka N, Nagahori T, Endo S, Takaku A. Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir (Wien). 1992;114(1-2):43-50.
  49. Plum F, Siesjo BK.Recent advances in CSF physiology. Anesthesiology. 1975 Jun;42(6):708-730.
  50. Poca MA, Sahuquillo J, Topczewski T, Lastra R, Font ML, Corral E. Posture-induced changes in intracranial pressure: a comparative study in patients with and without a cerebrospinal fluid block at the craniovertebral junction. Neurosurgery 2006; 58:899-906.
  51. Rekate HL. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res. 2008 Jan 22;5:2.
  52. Shirane R, Sato S, Sato K, Kameyama M, Ogawa A, Yoshimoto T, Hatazawa J, Ito M. Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst. 1992 May;8(3):118-23.
  53. Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, Rubenstein E, Possin K, Saul TA.The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer"s type. Neurology. 2001 Nov 27;57(10):1763-6.
  54. Smith ZA, Moftakhar P, Malkasian D, Xiong Z, Vinters HV, Lazareff JA. Choroid plexus hyperplasia: surgical treatment and immunohistochemical results. Case report. J Neurosurg. 2007 Sep;107(3 Suppl):255-62.
  55. Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelsц C. Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry. 2005 Jul;76(7):965-70.
  56. Stoquart-ElSankari S, Balйdent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME. Aging effects on cerebral blood and cerebrospinal fluid flows J Cereb Blood Flow Metab. 2007 Sep;27(9):1563-72. Epub 2007 Feb 21.
  57. Szewczykowski J, Sliwka S, Kunicki A, Dytko P, Korsak-Sliwka J. A fast method of estimating the elastance of the intracranial system. J Neurosurg. 1977 Jul;47(1):19-26.
  58. Tarnaris A, Watkins LD, Kitchen ND. Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res. 2006 Oct 4;3:11.
  59. Unal O, Kartum A, Avcu S, Etlik O, Arslan H, Bora A. Cine phase-contrast MRI evaluation of normal aqueductal cerebrospinal fluid flow according to sex and age Diagn Interv Radiol. 2009 Oct 27. doi: 10.4261/1305-3825.DIR.2321-08.1. .
  60. Weiss MH, Wertman N. Modulation of CSF production by alterations in cerebral perfusion pressure. Arch Neurol. 1978 Aug;35(8):527-9.

Движение ликвора обусловлено его непрерывным образованием и резорбцией. Движение ликвора осуществляется в следующем направлении: из боковых желудочков, через межжелудочковые отверстия в III желудочек и из него через водопровод большого мозга в IV желудочек, а оттуда через его срединное и боковые отверстия в мозжечково-продолговато-мозговую цистерну. Затем ликвор передвигается вверх к верхнебоковой поверхности мозга и вниз к конечному желудочку и в спинно-мозговой ликворный канал. Линейная скорость циркуляции ликвора - около 0,3-0,5 мм/мин, а объемная - между 0,2-0,7 мл/мин. Причиной движения ликвора служат сокращения сердца, дыхание, положение и движения тела и движения реснитчатого эпителия сосудистых сплетений.

Оттекает ликвор из субарахноидального пространства в субдуральное, затем всасывается мелкими венами твердой мозговой оболочки.

Спинно-мозговая жидкость (ликвор) образуется преимущественно за счет улътрафильтрации плазмы крови и секреции некоторых компонентов в сосудистых сплетениях головного мозга.

Гематоэнцефалический барьер (ГЭБ) связан с поверхностью, отделяющей мозг и ликвор от крови и обеспечивающей двунаправленный селективный обмен различных молекул между кровью, ликвором и мозгом. Уплотненные контакты эндотелия мозговых капилляров, эпителиальные клетки сосудистых сплетений и арахноидальных мембран служат морфологической базой барьера.

Термин "барьер" указывает на состояние непроницаемости для молекул определенного критического размера. Низкомолекулярные компоненты плазмы крови, такие, как глюкоза, мочевина и креатинин, свободно поступают из плазмы в ликвор, тогда как белки проходят пассивной диффузией через стенку сосудистого сплетения, и между плазмой и спинно-мозговой жидкостью имеется значительный градиент, зависящий от молекулярной массы белков.

Ограниченная проницаемость сосудистых сплетений и ГЭБ поддерживают нормальный гомеостаз и состав ликвора.

Физиологическое значение ликвора :

  • ликвор осуществляет функцию механической защиты мозга;
  • экскреторная и так называемая Sing-функция, т. е. выделение некоторых метаболитов для предупреждения их накапливания в мозге;
  • ликвор служит транспортным средством для разных веществ, особенно биологически активных, таких, как гормоны и т. д.;
  • выполняет стабилизирующую функцию:
    • поддерживает исключительно стабильное окружение мозга, которое должно быть относительно нечувствительно к быстрым изменениям состава крови;
    • поддерживает определенную концентрацию катионов, анионов и рН, что обеспечивает нормальную возбудимость нейронов;
  • осуществляет функцию специфического защитного иммунобиологического барьера.

Правила получения и доставки ликвора в лабораторию


И.И.Миронова, Л.А.Романова, В.В.Долгов
Российская медицинская академия последипломного образования

Для получения ликвора чаще всего применяют люмбальную, реже - субокципитальную пункцию. Вентрикулярный ликвор получают обычно во время операции.

Люмбальная пункция проводится между III и IV поясничными позвонками (L 3 -L 4) по линии Quincke (линия, соединяющая самые высокие части гребней двух подвздошных костей). Пункцию можно также проводить между L 4 -L 5 ; L 5 -S 1 и между L 2 -L 3 .

Субокципитальная (цистернальная) пункция проводится между основанием черепа и I шейным позвонком, на высоте линии, соединяющей сосцевидные отростки.

Вентрикулярная (желудочковая) пункция - это практически хирургическая манипуляция, выполняется в тех случаях, когда другие виды пункции противопоказаны или нецелесообразны. Пунктируется передний, задний или нижний рог одного из боковых желудочков мозга.

При проведении люмбальной пункции необходимо первые 3-5 капель ликвора удалить, что позволяет освободиться от примеси «путевой» крови, попадающей в первую порцию ликвора в результате повреждения иглой кровеносных сосудов, расположенных в области эпидурального пространства. Затем собрать 3 порции (в исключительных случаях две) в стерильные стеклянные или пластиковые пробирки, плотно их закрыть, на каждой пробирке указать её порядковый номер, имя, отчество и фамилию больного, время пункции, диагноз и перечень необходимых исследований. Собранный в пробирки ликвор доставляется в клинико-диагностическую лабораторию немедленно.

С помощью люмбальной пункции у взрослого человека можно без осложнений получить 8-10 мл ликвора, у детей, включая детей младшего возраста, - 5-7 мл, у грудных детей - 2-3 мл.

Выбор редакции
В зависимости от вида штрафа, в 1С 8.3 применяется различный порядок отражения в учете. Рассмотрим наиболее распространённые ситуации. На...

1. Для начала необходимо отобрать початки кукурузы. Они должны быть одинакового размера и не очень крупные. Именно поэтому лучше отдать...

Скумбрия тушеная — общие принципы приготовления Тушеная скумбрия – простое в приготовлении, вкусное и очень полезное блюдо. Для него не...

Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
С наступлением поста многие из нас задаются вполне обоснованными вопросами. Например, таким: «Можно ли есть в пост морепродукты?» Здесь...
Карп – один из символов водной стихии. Кроме того, эта рыба во многих культурах наделяется особыми свойствами. К примеру, на востоке...
Две недели назад 36-летняя Анастасия Мыскина объявила о расставании с гражданским мужем, политиком и бизнесменом Сергеем Мамедовым....
Почти у всех людей, изучающих английский язык, возникают трудности при изучении грамматики. И речь идет не только о понимании правил...