Где образуются желчные кислоты. Здоровье, медицина, здоровый образ жизни. Как избежать застоя желчи


Они представляют собой органические кислоты, которые являются особыми компонентами желчи и играют важную роль при всасывании и переваривании жиров, а также участвуют в переносе липидов в водной среде. Ко всему прочему, желчные кислоты представляют собой конечный продукт обмена холестерина.

Структура кислот

Химическая структура желчной кислоты является производной холановой кислоты (C23H39COOH). К ее кольцевой структуре происходит присоединение одной или нескольких гидроксильных групп. Холановые и желчные кислоты включают в себя 5 углеродных атомов, в конце которых находится COOH. Желчь человека содержит холевую (3-альфа, 7-альфа, 12-альфа-триокси-5-бета-холановая) и хенодезоксихолевую кислоту, а также в толстой кишке происходит преобразование первичных кислот во вторичные, содержащие дезоксихолевую, литохолевую, аллохолевую и урсодезоксихолевую кислоты. У взрослого человека они должны составлять: литохолевая – 2 %, хенодезоксихолевая - 34 %, холевая- 38 %, дезоксихолевая - 28 %.

Биологическая роль

Важную роль желчные кислоты играют в пищеварительной системе человека. В первую очередь они эмульгируют пищевые жиры. Во-вторых, выполняют роль перевозчика, который переносит труднорастворимые в воде витамины - продукты гидролиза жира. Во время процесса эмульгирования происходит дробление сложных частиц на более мелкие, что позволяет им лучше усвоиться. Третья роль желчных кислот – это активация липолитических ферментов.


Функция кислот

Какую функцию выполняют желчные кислоты в организме человека? Благодаря своей структуре, в которой содержится гидроксильная группа, а также их соли, обладающие свойством детергента, кислотное соединение способно расщепить липиды и принимать участие во всасывании и их переваривании.

Помимо всего, выполняют желчные кислоты функцию регулировки синтеза холестерина в печени. К тому же холевые кислоты нейтрализуют желудочный сок, который поступает в кишечник вместе с пищей. Способствует подавлению бродильных и гнилостных процессов за счет проявления бактерицидных действий. Желчные кислоты усиливают перистальтику кишечника, чем предотвращают возникновение запора. Также они принимают участие в водно-электролитном обмене. Холевые кислоты способствуют росту полезной микрофлоры кишечника. Также важной является роль желчных кислот в переваривании липидов. Это позволяет им лучше усваиваться и трансформировать вещества для обмена.


Образование кислот

Образование кислот происходит во время процесса переработки холестерина печенью. Когда пища попадает в желудок, происходит сжатие желчного пузыря и выброс порции желчи в 12-перстную кишку. На этой начальной стадии происходит процесс расщепления и усвоение жиров. Происходит всасывание жирорастворимых витаминов. Когда пищевой комок достигнет тонкого кишечника, появятся в крови желчные кислоты. После в процессе кровообращения они начнут поступать в печень.

Классификация холеновых кислот

Желчные кислоты делятся на две группы: первичные и вторичные.

Первичные состоят из хенодезоксихолевых и холевых соединений. Они образуются непосредственно в печени. Вторичные возникают у человека в кишечнике за счет воздействия микрофлоры на первичные кислоты.

Происходит синтез аллохолевых, литохолевых, урсодезоксихолевых и дезоксихолевых молекул. Микроорганизмы в кишечнике образуют около 20 различных вторичных кислот. Только две молекулы: литохолевая и дезоксихолевая возвращаются обратно в печень человека путем всасывания в кровяное русло. Остальные выводятся вместе с калом. Первичные кислоты, перед тем как попасть в кишечник, соединяются с таурином, аминокислотами и глицином. В результате чего происходит образование тауродезоксихолевых, гликолевых молекул. В науке они называются парными. За счет своего сложного состава они выполняют различные функции организма.


Кислоты и липиды

Переваривание липидов происходит в двенадцатиперстной кишке. Именно туда поступает липаза вместе соком поджелудочной железы, а также конъюгированные кислоты, которые входят в состав желчи. Также с желчью поступают вещество, которое стабилизирует липазу.

Холевые кислоты точно так же, как амфифильные соединения, преобразуются на границе жира и воды. Гидрофильная погружается в воду, а вот гидрофобная в жир, что приводит к разделению капель жира и увеличивает их количество. Липаза сорбируется на поверхности мицелл, она гидролизует эфирные связи в молекулах липидов. Происходит высвобождение жирных кислот, которые усиливают липидное эмульгирование. Примерно 3/4 липидов всасываются в кишечник в виде моноациглицеридов, а также в небольшом количестве нераспавшихся жиров.

Холевые кислоты образуют с жирными кислотами мицеллы, которые позволяют проникнуть в клетки слизистой. После чего происходит высвобождение желчных кислот в кровоток. Кровь поступает в печень и затем происходит секретирование в желчные капилляры. В сутки организм теряет около 0,3 граммов желчных кислот, они выходят вместе с калом. Потеря холевых кислот восполняется за счет синтеза, происходящего в печени.

Нарушение в работе кислот

Нарушение оттока желчи называют холестаз. Пища, которая потребляется в течение дня, влияет на желчь, а также на секреторную жидкость. В момент переваривания жидкость смешивается с холевыми кислотами, растворяя их и очищая организм от токсинов. Также помогает усваиваться аминокислотам и витаминам. С наступлением перерыва в приеме пищи, желчь также продолжает выделяться, но уже поступает в желчный пузырь. Она скапливается в пузыре до нового приема еды. Жидкость проходит по двенадцатиперстной кишке, объединяясь с секреционной жидкостью, которую выделяет печень.

Холестаз делят на два типа:

  1. Внутрипеченочный – этот тип возникает при заболевании или проблеме с печенью. Он может быть вызван инфекцией или вирусом, а также хроническим заболеванием организма в целом.
  2. Внепеченочный – этот тип возникает при заболевании поджелудочной железы или двенадцатиперстной кишки.

Причина нарушения

При циррозе печени, а также при гепатите происходит нарушение протока желчи. Так как желчь проходит по протокам, то при заболевании органов пищеварения могут возникнуть проблемы с ее прохождением. Причины возникновения нарушения желчегонного свойства следующие:

  • большое содержание холестерина в желчи может привести к нарушению липидного обмена веществ в организме;
  • однообразное питание может привести к ограниченному оттоку жидкости;
  • тяжелые заболевания печени, такие как цирроз или рак, также вызывают меньший отток;
  • маленькое содержание липидов препятствует сгущению желчи;
  • при заболевании желчного пузыря возникают проблемы с оттоком;
  • у женщин проблемы с желчными кислотами возникают при беременности, а также при климаксе;
  • нестабильный эмоциональный фон и прием антидепрессантов также ведут к нарушению.

Плохая проходимость желчи может вызвать более серьезную проблему - это ее застой. При эмульгации липидов желчные кислоты выводят из организма лишний билирубин и холестерин. Застой приведет к поносу, вздутию живота и метеоризму. Из-за того, что холестерин будет попадать в кровь, велика вероятность появления атеросклероза. Возникает риск возникновения холецистита, что может привести к образованию камней. Возникает недостаток холевых кислот, из-за чего не происходит переваривание сложных липидов и усвоение жирорастворимых витаминов в организме. У человека возникает синдром мальабсорбции.

Токсины и вредные организмы не уничтожаются и не выводятся при помощи желчных кислот, а наоборот, развиваются в организме человека, вызывая опасные заболевания. Большое количество желчи приводит к повреждению печени разрушению. Заболевание желчного пузыря может привести к желтухе.


Диагностика кислот

Одним из способов узнать содержание желчных кислот в организме является биохимический анализ на желчные кислоты. Его назначает доктор в том случае, если возникли подозрения на сбой в работе печени. Уровень их повышается даже при небольшой патологии. Первичными симптомами для доктора служат следующие факторы:

  • резкая потеря веса:
  • высыпание и кожный зуд:
  • размер печени увеличивается:
  • сухость кожи.

Изменение нормы в количестве желчных кислот может возникнуть у женщин в период беременности. Поэтому помимо сдачи анализа, требуются и другие исследования для точной картины заболевания.


Лечение и восстановление работы желчных кислот

При возникновении незначительных проблем с проходимостью желчи врач может назначить желчегонные препараты, которые способствуют улучшению ее оттока. Помимо медикаментозного лечения, доктор предлагает и народные средства, которые способствуют проходимости. В основном, это желчегонные травы, а также настой из шиповника.

При возникновении инфекционной проблемы, связанной с застоем желчи, доктор выписывает антибиотики и спазмолитики.

При сильном застое требуется хирургическое вмешательство. Хирург делает операцию в зависимости от того места, где произошел сбой. Основной задачей врача является восстановление протока желчи в печень. Для этого ставятся специальные дренажи. Они способствуют протоку желчных кислот и восстанавливают тем самым их функции. Если протокам желчи мешает камень, его удаляют. Удаление камня может происходить как хирургическим путем, так и при помощи лазера.

В сложных случаях происходит удаление желчного пузыря, а проток пускают прямо в двенадцатиперстную кишку.

Как избежать застоя желчи?

Для лучшей работы желчных кислот нужно соблюдать простые правила. Еда должна быть разнообразной и съедаться в одно и то же время. Ограничить потребление очень жирной пищи, применять небольшое количество соли в пищу. Для людей, перенесших удаление желчного пузыря, врачи рекомендуют диету № 5, которая содержит полезные вещества и способствует восстановлению организма.

Для того чтобы желчь выделялась в достаточном количестве и не происходил ее застой, важно двигаться. Застой желчных кислот может быть вызван не только неправильным питанием, но также сидячей и малоподвижной работой.

Работа желчных кислот зависит от человека и его образа жизни. Даже генетически расположенные к проблемам люди могут избежать их появления, соблюдая правильный образ жизни и консультируясь со специалистом. Важно включить в свой день зарядку, простую гимнастику, больше гулять на свежем воздухе. Не нужно перегружать организм, лучше всего подходит умеренная физическая активность. Желчная кислота играет важную роль в пищеварительной системе.

Монокарбоновые оксикислоты, относящиеся к классу стероидов. Твердые оптически активные вещества, плохо растворимые в воде. Вырабатываются печенью из холестерина , содержат (у млекопатиющих) 24 атома углерода. У различных животных структура доминирующих желчных кислот видоспецифична. В организме желчные кислоты обычно образуют конъюгаты с глицином (гликолевая кислота) или таурином (таурохолевая кислота).

Первичные желчные кислоты — холевая кислота и хенодезоксихолевая кислота — синтезируются в печени из холестерина, конъюгируются с глицином или таурином и секретируются в составе желчи.

Вторичные желчные кислоты, включая дезоксихолевую кислоту и литохолевую кислоту, образуются из первичных желчных кислот в толстой кишке под действием бактерий.

Литохолевая кислота всасывается значительно хуже, чем дезоксихолевая. Другие вторичные желчные кислоты образуются в ничтожно малых количествах. К ним относятся урсодезоксихолевая кислота (стереоизомер хенодезоксихолевой кислоты) и ряд других необычных желчных кислот.

При хроническом холестазе эти кислоты обнаруживаются в повышенных количествах. В норме соотношение количеств желчных кислот, конъюгированных с глицином и таурином, составляет 3:1; при холестазе часто повышены концентрации желчных кислот, конъюгированных с серной и глюкуроновой кислотами.

Желчные кислоты являются поверхностно-активными веществами. Если их концентрация в водном растворе превышает критическую — 2 ммоль/л, — молекулы желчных кислот образуют агрегаты, называемые мицеллами.

Холестерин плохо растворим в воде; его растворимость в желчи зависит от концентрации липидов и соотношения молярных концентраций желчных кислот и лецитина. При нормальном соотношении этих компонентов образуются растворимые смешанные мицеллы, содержащие холестерин, при нарушенном соотношении происходит осаждение кристаллов холестерина.

Помимо того, что желчные кислоты способствуют экскреции холестерина, они необходимы для всасывания жиров в кишечнике, которое также осуществляется посредством образования мицелл.

Активный транспорт желчных кислот является важнейшим фактором, обеспечивающим образование желчи.

Наконец, в тонкой и толстой кишках желчные кислоты способствуют транспорту воды и электролитов.

Монокарбоновые оксикислоты, относящиеся к классу стероидов. Твердые оптически активные вещества, плохо растворимые в воде. Вырабатываются печенью из холестерина, содержат (у млекопитающих) 24 атома углерода. У различных животных структура доминирующих желчных кислот видоспецифична.

В организме желчные кислоты обычно образуют конъюгаты с глицином (гликолевая кислота) или таурином (таурохолевая кислота).

Желчные кислоты представляют собой твердые порошкообразные вещества с высокой температурой плавления (от 134 до 223 °С), обладающие горьким вкусом, плохо растворимые в воде, лучше — в спиртовых и щелочных растворах. По химической структуре они принадлежат к группе стероидов и являются производными холановой кислоты (С24Н40О2). Все желчные кислоты образуются только в гепатоцитах из холестерина.

Среди желчных кислот человека Bergstrom различал первичные (холевая и хенодезоксихолевая, синтезируемые в печени) и вторичные (дезоксихолевая и литохолевая, образующиеся в тонкой кишке из первичных кислот под действием бактериальной микрофлоры кишечника).

В желчи человека содержатся также аллохолевая и урсодсзоксихолсвая кислоты — стереоизомеры соответственно холевой и хенодезоксихолевой кислот. В физиологических условиях в желчи свободные желчные кислоты практически не встречаются, так как все они связаны в парные соединения с глицином или таурином. Физиологическое значение конъюгатов желчных кислот заключается в том, что их соли являются более полярными, чем соли свободных желчных кислот, легче секретируются и имеют меньшую величину критической концентрации мицеллообразования.

Печень — единственный орган, способный превращать холестерин в гидроксилзамещенные холановые кислоты, так как ферменты, участвующие в гидроксилировании и конъюгации желчных кислот, находятся в микросомах и митохондриях гепатоцитов. Конъюгация желчных кислот, осуществляемая ферментным путем, происходит в присутствии ионов магния, АТФ, НАДФ, СоА. Активность этих ферментов изменяется соответственно колебаниям скорости циркуляции и состава пула желчных кислот в печени. Синтез последних контролируется механизмом отрицательной обратной связи, т. с. интенсивность синтеза желчных кислот в печени обратно пропорциональна току вторичных желчных кислот в печень.

В нормальных условиях синтез желчных кислот в печени у человека низкий — от 200 до 300 мг в день. Преобразование холестерина в желчные кислоты происходит в результате окисления боковой цепи и кар-боксилирования С24~атома. Далее насыщается двойная связь между С4- и С6-атомами. Оптическая конфигурация гидроксигруппы при С3-атоме изменяется: переходит из пара-положения в положение с введением двух гидроксильных групп. По-видимому, все микросомальные реакции гидроксилирования в биосинтезе желчных кислот требуют участия электронно-транспортной цепи, включающей цитохром-Р-450-и НАДФ-Н2-цитохром-Р~450-оксидоредуктазу.

Этапы, которые приводят к образованию холевой кислоты, отличаются от этапов образования хенодезоксихолевой кислоты. Фактически эти кислоты не превращаются одна в другую, во всяком случае у людей. Реакция процесса образования холевой и хенодезоксихолевой кислот определяется с помощью влияния на активность трех основных гидроксилаз.

Первая реакция на пути биосинтеза желчных кислот — гидроксилирование холестерина в 1а-положении — является ступенью, ограничивающей скорость процесса в целом. В 1972 г. было показано существование циклических суточных колебаний активности клеточного ключевого фермента в биосинтезе желчных кислот — холестеринбиосинтезе желчных кислот — холестерин-7а-гидроксилазы, обусловленных изменениями синтеза самого фермента. Оказалось, что изменение скорости синтеза желчных кислот и холестерина в течение суток происходит одновременно с максимумом около полуночи. Время, необходимое для того, чтобы запасы холестерина уравновесились запасами холевой кислоты, равно 3-5 дням, а для дезоксихолевой кислоты — 6-10 дням. Это соответствует тому факту, что холевая кислота — прямой дериват холестерина, а дезоксихолевая кислота — производное холевой кислоты.

Синтезированные в гепатоцитах желчные кислоты экскретируются в желчь конъюгированными с глицином или таурином и по желчевыводящим путям поступают в желчный пузырь, где и накапливаются. В стенках желчного пузыря происходит всасывание незначительного количества желчных кислот — около 1,3%. Натощак основной пул желчных кислот находится в желчном пузыре, а после стимуляции пищей желудка рефлекторно происходит сокращение желчного пузыря и желчные кислоты поступают в двенадцатиперстную кишку. Желчные кислоты ускоряют липолизис и усиливают солюбилизацию и абсорбцию жирных кислот и моноглицеридов.

В кишечнике желчные кислоты под влиянием анаэробов в основной массе деконъюгируются и реабсорбируются, главным образом в дистальном отделе тонкой кишки, где и образуются вторичные желчные кислоты путем бактериального дегидроксилирования из первичных. Из кишечника желчные кислоты с током портальной крови вновь попадают в печень, которая абсорбирует практически все желчные кислоты (примерно 99%) из портальной крови; совсем небольшое количество (около 1%) попадает в периферическую кровь. Вот почему, если имеется патология печени, ее способность абсорбировать желчные кислоты из портальной крови и экскретировать их в общий желчный проток может быть снижена. Таким образом, уровень желчных кислот в периферической крови будет повышаться. Значимость определения сывороточных желчных кислот заключается в том, что они, являясь индикаторами холестаза, могут быть у части больных показателем заболевания собственно печени — индикатором гепатодепрессии.

Установлено, что активное всасывание желчных кислот происходит в подвздошном отделе тонкой кишки, тогда как пассивная абсорбция идет за счет концентрации желчных кислот в кишечнике, поскольку она всегда выше, чем в портальной крови. При активной абсорбции всасывается основная масса желчных кислот, а на долю пассивной абсорбции выпадает всасывание незначительного количества. Всосавшиеся из кишечника желчные кислоты связываются с альбумином и по воротной вене транспортируются обратно в печень. В гепатоцитах токсичные свободные желчные кислоты, составляющие примерно 15% от всего количества желчных кислот, всосавшихся в кровь, превращаются в конъюгированные. Из печени желчные кислоты вновь поступают в желчь в виде конъюгатов.

Подобная энтерогепатическая циркуляция в организме здорового человека совершается 2-6 раз в сутки в зависимости от режима питания; 10-15% от всех поступивших в кишечник желчных кислот после деконъюгации подвергаются более глубокой деградации в нижних отделах тонкой кишки. В результате процессов окисления и восстановления, вызываемых ферментами микрофлоры толстой кишки, происходит разрыв кольцевой структуры желчных кислот, что приводит к образованию ряда веществ, выделяемых с фекалиями во внешнюю среду. У здорового человека около 90% фекальных желчных кислот составляют вторичные, т. е. литохолевая и дезок-сихолевая кислоты. При использовании меченых желчных кислот доказано, что лишь незначительное их количество может быть обнаружено в моче.

ОСНОВНЫЕ ФУНКЦИИ ЖЕЛЧНЫХ КИСЛОТ

Желчные кислоты в организме человека выполняют различные функции, основные из них — участие во всасывании жиров из кишечника, регуляция синтеза холестерина и регуляция желчеобразования и желчевыделения.

Желчные кислоты играют важную роль в переваривании и всасывании липидов. В тонкой кишке конъюгированные желчные кислоты, являясь поверхностно-активными веществами, адсорбируются в присутствии свободных жирных кислот и моноглицеридов на поверхности капелек жира, образуя при этом тончайшую пленку, препятствующую слиянию мельчайших капелек жира в более крупные. При этом происходит резкое снижение поверхностного натяжения на границе двух фаз — воды и жира, что приводит к образованию эмульсии с размерами частиц 300-1000 ммк и мице-лярного раствора с размерами частиц 3-30 ммк. Образование мицеллярных растворов облегчает действие панкреатической липазы, которая при воздействии на жиры расщепляет их на глицерин, легко всасывающийся кишечной стенкой, и жирные кислоты, нерастворимые в воде. Желчные кислоты, соединяясь с последними, образуют холеиновые кислоты, хорошо растворимые в воде и поэтому легко всасывающиеся кишечными ворсинками в верхних отделах тонкой кишки. Холеиновые кислоты в виде мицелл всасываются из просвета подвздошной кишки внутрь клеток, сравнительно легко проходя мембраны клеток.

Электронно-микроскопические исследования показали, что в клетке связь желчных и жирных кислот распадается: желчные кислоты попадают через портальную вену в кровь и печень, а жирные кислоты, накапливаясь внутри цитоплазмы клеток в виде гроздьев мельчайших капель, являются конечными продуктами всасывания липидов.

Вторая существенная роль желчных кислот — регуляция синтеза холестерина и его деградации. Скорость синтеза холестерина в тонкой кишке зависит от концентрации желчных кислот в просвете кишки. Основная часть холестерина в организме человека образуется путем синтеза, а незначительная часть поступает с пищей. Таким образом, влияние желчных кислот на обмен холестерина заключается в поддержании его баланса в организме. Желчные кислоты сводят к минимуму нарастание или недостаток холестерина в организме.

Разрушение и выброс части желчных кислот представляют важнейший путь экскреции конечных продуктов холестерина. Холевые кислоты служат регулятором метаболизма не только холестерина, но и других стероидов, в частности гормонов.

Физиологической функцией желчных кислот является участие в регуляции экскреторной функции печени. Желчные соли действуют как физиологические слабительные, усиливая перистальтику кишечника. Этим действием холатов объясняются внезапные поносы при поступлении в кишечник больших количеств концентрированной желчи, например при гипомоторной дискинезии желчных путей. При забрасывании желчи в желудок может развиваться .

РАЗНОВИДНОСТИ ЖЕЛЧНЫХ КИСЛОТ

ХОЛЕВАЯ КИСЛОТА

В печени из холестерина образуются желчные кислоты. Эти стероидные соединения с 24 атомами углерода являются производные холановой кислоты, имеющими от одной до трех б-гидроксильных групп и боковую цепь из 5 атомов углерода с карбоксильной группой на конце цепи. В организме человека наиболее важна холевая кислота. В желчи при слабощелочном рН она присутствует в виде холат-аниона.

ЖЕЛЧНЫЕ КИСЛОТЫ И СОЛИ ЖЕЛЧНЫХ КИСЛОТ

Кроме холевой кислоты в желчи содержится также хенодезоксихолевая кислота. Она отличается от холевой отсутствием гидроксильной группы при С-12. Оба соединения принято называть желчными кислотами. В количественном отношении это наиболее важные конечные продукты обмена холестерина.

Другие две кислоты, дезоксихолевая и литохолевая, называются вторичными желчными кислотами, поскольку они образуются путем дегидроксилирования по С-7 первичных кислот в желудочно-кишечном тракте. В печени образуются конъюгаты желчных кислот с аминокислотами (глицином или таурином),связанные пептидной связью. Эти конъюгаты являются более сильными кислотами и присутствуют в желчи в форме солей (холатов и дезоксихолатов Na+ и К+, называемых солями желчных кислот).

МИЦЕЛЛЫ

В связи с наличием в структуре б-гидроксильных групп желчные кислоты и соли желчных кислот являются амфифильными соединениями и обладают свойствами детергентов (см. с. 34). Основные функции желчных кислот состоят в образовании мицелл, эмульгировании жиров и солюбилизации липидов в кишечнике. Это повышает эффективность действия панкреатической липазы и способствует всасыванию липидов.

На рисунке показано, как молекулы желчных кислот фиксируются на мицелле своими неполярными частями, обеспечивая ее растворимость. Липаза агрегирует с желчными кислотами и гидролизует жиры (триацилглицерины), содержащиеся в жировой капле.

МЕТАБОЛИЧЕСКИЕ ПРЕВРАЩЕНИЯ ЖЕЛЧНЫХ КИСЛОТ

Первичные желчные кислоты образуются исключительно в цитоплазме клеток печени. Процесс биосинтеза начинается с гидроксилирования холестерина по С-7 и С-12, и эпимеризации по C-3, затем следует восстановление двойной связи в кольце В и укорачивание боковой цепи на три углеродных атома.

Лимитирующей стадией является гидроксилирование по С-7 с участием 7б-гидроксилазы. Холевая кислота служит ингибитором реакции, поэтому желчные кислоты регулируют скорость деградации холестерина.

Коньюгирование желчных кислот проходит в две стадии. Вначале образуются КоА-эфиры желчных кислот, а затем следует собственно стадия конъюгации с глицином или таурином с образованием, например, гликохолевой и таурохолевой кислот. Желчь дренируется во внутрипеченочные желчные протоки и накапливается в желчном пузыре.

Кишечная микрофлора продуцирует ферменты, осуществляющие химическую модификацию желчных кислот. Во-первых, пептидная связь гидролизуется (деконьюгирование), и, во-вторых, за счет дегидроксилирования С-7 образуются вторичные желчные кислоты. Однако большая часть желчных кислот всасывается кишечным эпителием (6) и после попадания в печень вновь секретируется в составе желчи (энтерогепатическая циркуляция желчных кислот). Поэтому из 15-30 г солей желчных кислот, ежедневно поступающих в организм с желчью, в экскрементах обнаруживается только около 0,5 г. Это примерно соответствует ежесуточному биосинтезу холестерина de novo.

При неблагоприятном составе желчи отдельные компоненты могут кристаллизоваться. Это влечет за собой отложение желчных камней, которые чаще всего состоят из холестерина и кальциевых солей желчных кислот (холестериновые камни), но иногда эти камни включают и желчные пигменты.

Жёлчные кислоты - органические молекулы. Они являются основой секрета, вырабатываемого печенью. Кислоты остаются после обмена холестерина и берут на себя функции переваривания и всасывания жиров. Дополнительно кислоты поддерживают нормальный состав кишечной микрофлоры. Благодаря научным исследованиям целебных свойств жёлчных компонентов, они получили широкое применение в производстве лекарственных препаратов.

Жёлчь является многокомпонентной жидкостью, дающей щелочную реакцию, обусловленную содержанием ионов натрия и калия. Они входят в состав солей.

В печёночном секрете выделяются две части: сухой остаток, составляющий примерно 3% и вода 97%. При сбоях в организме соотношение может меняться.

Сухой остаток жёлчи состоит из следующих компонентов:

  • попадающих из кровяного русла посредством фильтрации креатинина, натрия, фосфатидилхолина, бикарбонат-ионов, холестерола и калия;
  • производимых клетками печени пигмента билирубина и жёлчных кислот.

Нормальное соотношение жёлчных кислот к фосфадитилхолину и холестерину - 13:2,5:1 соответственно.

Жёлчные кислоты составляют преобладающую часть в отношении к другим компонентам печёночного секрета.

Секрет, выделяемый печенью и находящийся в пузыре, отличаются по составу. В жёлчном жидкость становится более концентрированной, густой и тёмной. Только выработанная печенью жёлчь, напротив, жёлтая и насыщенная водой.

Жёлчные кислоты иначе называются холиевыми и холеновыми. Соединения представляют собой монокарбоновые гидроксикислоты, относящиеся к классу стероидов. Приставка «гидро» указывает на содержание молекулами воды.

Молекулы жёлчных кислот у человека состоят из 24 атомов углерода. У животных встречаются соединения 27 или 28 частиц. Структура преобладающих молекул у каждого животного может различаться.

Литохолевое, холевое, дезоксихолевое и хенодезоксихолевое соединения, имеющиеся у человека, также могут встречаться в печёночном секрете животных.

К примеру, холевое вещество имеется у коз и антилоп, а дезоксихолевое у собак, оленей, овец, коз, кроликов и быков. Хенодезоксихолевое соединение типично для жёлчи собак, оленей, овец, гусей, коз, быков, кроликов. У двух последних животных встречается и литохолевая вариация. У животных обнаруживаются холиевые соединения, отсутствующие у человека.

В список входят:

  • кипринол;
  • нутрихолевая кислота;
  • битохолевое соединение;
  • гиохолевая кислота;
  • буфодезоксихолевое вещество.

У животных, питающихся растительной пищей, наблюдается преобладание хенодезоксихолевого вещества. Для плотоядных же характерно холевое соединение.

Роль жёлчных кислот в человеческом организме многогранна. Соединения не только обеспечивают нормальное функционирование пищеварительного тракта, но и принимают участие во многих других процессах.

Главные функции заключаются:

  1. В нейтрализации кислого содержимого, поступающего в 12-перстную кишку. Производится совместно с липазой - ферментом поджелудочной железы.
  2. Обеспечении процессов переваривания и всасывания жиров. Это обеспечивает сочетание жёлчных, жирных кислот и моноациглициролов. Происходит первичное расщепление жиров для дальнейшего действия на них липазы. Далее, моноглицериды и жирные кислоты создают мицеллярный раствор. Из него организм может усвоить жиры и жирорастворимые витамины.

Жёлчные реагенты стимулируют рост полезной микрофлоры кишечника, тем самым способствуют его нормальному функционированию.

С жёлчными компонентами также происходит выведение излишек креатинина, пигментов жёлчи, некоторых лекарств и металлов, холестерина. Последний может утилизироваться только с печёночным секретом. За сутки устраняется до 2 гр. холестерина.

Выполнив свои физиологические функции, холиевые молекулы всасываются и с током крови возвращаются в печень. Там соединения повторно секретируются. Таким образом, происходит непрерывная циркуляция жёлчи между печенью и кишечником. Возвращаются примерно 95% имеющихся в кишечнике холиевых молекул. Полное же обновление жёлчи происходит через 10 суток.

Синтез жёлчных кислот - преобладающий механизм выведения излишек холестерина. Однако этого недостаточно для утилизации чрезмерного количества вещества. Более того, холестерин из продуктов тормозит выработку жёлчных реагентов.

Классификация жёлчных соединений распределяет их на группы по месту образования:

  1. Первичные, то есть формирующиеся непосредственно в печени. Это холевое и хенодезоксихолевое соединения.
  2. Вторичные, или возникающие в кишечнике вследствии воздействия его микрофлоры на первичные. Так синтезируются дезоксихолевая, литохолевая, аллохолевая, урсодезоксихолевая молекулы. Под действием микроорганизмов кишечника может образовываться до 20 разновидностей вторичных кислот. Однако только дезоксихолевая и литохолевая всасываются в кровяное русло и возвращаются обратно в печень. Остальные молекулы выводятся с каловыми массами.

Перед попаданием в кишечник первичные холиевые вещества связываются с аминокислотами, глицином и таурином. В результате образуются гликохолевая, гликохенодезоксихолевая, тауро- и тауродезоксихолевая молекулы. Они называются парными.

Жёлчные кислоты, функции, выполняемые ими, многогранны за счёт сложного биохимического состава печёночного секрета.

Для понимания причин и последствий нарушения синтеза жёлчных реагентов, следует разобраться в механизме их образования.

Как говорилось, сначала создаются парные жёлчные кислоты. Так улучшается амфифильность молекул. Формула парных жёлчных кислот составляется из самой кислоты и аминокислоты, то есть таурина или глицина.

Будучи соединёнными с незаряженной функциональной группой, кислоты поступают в жёлчный пузырь и хранятся там до момента приёма пищи. Незначительная доля холиевых молекул всасывается в пузыре.

Из первичных молекул, поступивших в кишечник, под действием анаэробных бактерий происходит образование вторичных соединений. В последующем осуществляется их всасывание в кровяное русло. С током портальной вены молекулы поступают в печень.

За сутки циркуляция жёлчи осуществляется от 2 до 6 раз. Точный показатель во многом зависит от частоты приёма пищи. Общее содержание жёлчных кислот в организме составляет от 1,5 до 4 гр. Объём циркулирующих колеблется от 17 до 40 гр. Выводится с каловыми массами всего 0,2-0,5 гр.

Нарушения процесса синтеза жёлчных реагентов наблюдается при циррозе печени (разрастании плотной соединительной ткани). Происходят сбои в образовании холевого соединения. В итоге суточный запас жёлчи уменьшается наполовину.

Пониженное поступление холиевых молекул в кишечник вызывает нарушения пищеварительных процессов:

  • снижение качества переваривания поступающих с едой жиров;
  • не происходит должного всасывания в кишечнике жирорастворимых витаминов, что впоследствии вызывает гипо- или авитаминоз.

При нехватке витамина К снижается свёртываемость крови, повышается риск кровотечений. Недостаток витамина А приводит к «куриной слепоте», то есть плохому зрению в сумерках. Дефицит витамина D является причиной уменьшения прочности костной ткани из-за недостаточной её минерализации.

Накопление жёлчных компонентов в крови происходит при поражениях тканей печени и нарушениях эвакуации печёночного секрета. Последние характерны при сбоях в работе билиарной системы.

Когда жёлчные кислоты повышены в крови:

  • разрушаются эритроциты и снижается скорость их оседания;
  • понижается частота сердечных сокращений;
  • нарушается свёртываемость крови;
  • внешне процессы проявляются кожным зудом.

Нарушения могут наблюдаться в образовании парных соединений или их выведении в просвет 12-перстного кишечника. Сбои зачастую связаны с наличием препятствий, плохой проходимостью жёлчевыводящих протоков. Это наблюдается при жёлчекаменной болезни, сужении каналов, раке поджелудочной железы.

Развитие холестаза, то есть застоя жёлчи, происходит в тканях печени, пузыря или протоков.

При нарушениях кишечнопечёночной циркуляции меняются свойства кислот. Они теряют способность переваривать жиры и обеспечивать их и всасываемость.

Сбои зачастую возникают после:

Попадание содержимого, пропитанного жёлчью, из 12-перстного кишечника в желудок вызывает развитие гастрита. Процесс именуется рефлюксом.

У детей с врождёнными нарушениями синтеза жёлчных кислот происходит накопление токсических веществ в клетках печени, вызывая:

  • застойные явления;
  • хронические повреждения печёночной ткани;
  • повышение в крови уровня жёлчных компонентов.

Циркуляция жёлчи между печенью и кишечником - слаженный механизм, имеющий важное значение. Любые нарушения могут приводить к сбоям в работе организма.


Желчные кислоты являются основной составной частью желчи, на их долю приходится около 60% органических соединений желчи. Желчным кислотам принадлежит ведущая роль в стабилизации физико-коллоидных свойств желчи. Они участвуют во многих физиологических процессах, нарушение которых способствует формированию широкого спектра гепатобилиарной и кишечной патологии. Несмотря на то что желчные кислоты имеют схожее химическое строение, они не только обладают разнообразными физическими свойствами, но и значительно отличаются по своим биологическим характеристикам.

Основное предназначение желчных кислот хорошо известно - участие в переваривании и абсорбции жиров. Однако их физиологическая роль в организме значительно шире, например, генетически обусловленные нарушения их синтеза, биотрансформации и/или транспорта могут закончиться тяжелой патологией со смертельным исходом или быть причиной трансплантации печени. Следует отметить, что успехи в изучении этиологии и патогенеза целого ряда заболеваний гепатобилиариой системы, в которых доказана роль нарушенного обмена желчных кислот, дали серьезный толчок к производству лекарственных препаратов, влияющих на различные звенья патологического процесса.

Физико-химическая характеристика

В медицинской литературе термины «желчные кислоты» и «соли желчных кислот» используются в качестве синонимов, хотя с учетом их химической структуры название «соли желчных кислот» является более точным.

По химической природе желчные кислоты являются производными хода новой кислоты (рис. 3.5) и имеют сходную структуру, отличающую их по количеству и расположению гидроксильных групп.

В желчи человека в основном содержатся холевая (3,7,12-гриоксихолановая), деоксихолевая (3,12-диоксихолановая) и хенодеоксихолеиая (3,7-диоксихолановая) кислоты (рис. 3.6). Все гидроксильные группы имеют α-конфигурацию и поэтому обозначены пунктирной линией.

Кроме того, в желчи человека в небольшом количестве содержатся лигохолевая (3α-оксихолановая) кислота, а также аллохолевая и уреодеоксихолевая кислоты - стереоизомеры холевой и хенодеоксихолевой кислот.

Желчные кислоты, так же как и лецитины желчи и холестерин, являются амфифильными соединениями. Поэтому на границе раздела двух сред (вода/ воздух, вода/липид, вода/углеводород) их гидрофильная часть молекулы будет направлена в водную среду, а липофильная часть молекулы будет обращена в липидную среду. Нa этом основании их подразделяют на гидрофобные (липофильные) желчные кислоты и гидрофильные желчные кислоты. К первой группе относятся холевая, деоксихолевая и литохолевая, а ко второй - урсодеоксихолевая (УДХК) и хенодеоксихолевая (ХДХК).

Гидрофобные ЖК вызывают важные пищеварительные эффекты (эмульгация жиров, стимуляция панкреатической липазы, образование мицелл с жирными кислотами и др.), стимулируют выход в желчь холестерина и фосфолипидов, снижают синтез α-интерферона гепатоцитами, а также обладают выраженным детергентным свойством. Гидрофильные ЖК дают также пищеварительный эффект, но снижают кишечную абсорбцию холестерина, его синтез в гепатоците и поступление в желчь, уменьшают детергентное действие гидрофобных ЖК, стимулируют выработку гепатоцитами α-интерферона.

Синтез

Желчные кислоты, синтезируемые из холестерина в печени, являются первичными . Вторичные ЖК образуются из первичных желчных кислот под влиянием кишечных бактерий. Третичные желчные кислоты - результат модификации вторичных ЖК кишечной микрофлорой или гепатоцитами (рис. 3.7). Суммарное содержание ЖК: хенодеоксихолевая - 35%, холевая - 35%, деоксихолевая - 25%, уреодеоксихолевая - 4%, литохолевая - 1%.

Желчные кислоты являются конечным продуктом метаболизма холестерина в гепатоците. Биосинтез желчных кислот является одним из важных путей выведения холестерина из организма. ЖК синтезируются из неэтерифицированного холестерина в гладкой эндоплазматической сети гепатоцита (рис. 3.8) в результате ферментативных превращений с окислением и укорочением его боковой цепи. Во всех реакциях окисления участвует цитохром Р450 гладкого эндоплазматической сети гепатоцита - мембранного фермента, катализирующего монооксигеназные реакции.

Определяющей реакцией в процессе биосинтеза ЖК является окисление XC в 7α-положенин, которое происходит в гладком эндоплазматическом ретикулуме гепатоцита при участии холестерол-7α-гидроксмлазы и цитохрома Р450 (CYP7A1). В ходе этой реакции происходит преобразование плоской молекулы XC в L-образную. что обеспечивает ей устойчивость к осаждению кальцием. Окисляется в желчные кислоты и таким образом выводится из организма до 80% общего пула XC.

Лимитирует синтез желчных кислот 7α-гидроксилирование холестерина холестерол-7α-гидроксилазой в микросомах. Активность этого фермента регулируется количеством абсорбировавшихся в тонкой кишке ЖК по типу обратной связи.

Ген CYP7A1, кодирующий синтез 7α-редуктазы, расположен на хромосоме 8. Экспрессия гена регулируется многими факторами, однако основным из них являются ЖК. Экзогенное введение ЖК сопровождается снижением синтеза ЖК на 50%, прерывание ЭГЦ - увеличением их биосинтеза. На стадии синтеза желчных кислот в печени ЖК, особенно гидрофобные, активно подавляют транскрипцию гена CYP7A 1. однако механизмы этого процесса длительное время оставались невыясненными. Открытие фарнезилового Х-рецептора (farnesoid X receptor, FXR) - ядерного рецептора гепатоцита, который активируется только ЖК. позволило уточнить некоторые из этих механизмов.

Ферментативное 7α-гидроксилпрование холестерина является первым шагом на пути превращения его в ЖК. Последующие шаги биосинтеза ЖК состоят в перемещении двойных связей на стероидном ядре в различные положения, в результате чего происходит разветвление синтеза в направлении холевой или хенодеоксихолевой кислоты. С помощью ферментативного 12α-гидроксилирования холестерина посредством расположенной в эндоплазматическом ретикулуме 12α-гмдроксилазы происходит синтез холеной кислоты. Когда ферментативные реакции на стероидном ядре заканчиваются, две гидроксигруппы являются предступенями для хенодеоксихолевой кислоты, а три гидроксигруппы - предступенями для холеной кислоты (рис. 3.9).

Имеются также и альтернативные пути синтеза ЖК с помощью других ферментов, но они играют менее важную роль. Так. активность стерол-27-гидроксилазы, переносящей в молекуле холестерина гидроксильную группу в позицию 27 (CYP27A1), повышалась пропорционально активности холсстерол-7α-гидроке плазы и также изменялась по типу обратной связи в зависимости от количества желчных кислот, поглощенных гепатоцитом. Однако эта реакция менее выражена по сравнению с изменением активности холестерол-7α-гидроксилазы. В то время как суточный ритм активности стсрол-27-гидроксилазы и холестсрол-7α-гидроксилазы изменяется более пропорционально.

В печеночной клетке человека синтезируются холевая и хенодеоксихоле-вая кислоты, они называются первичными. Соотношение холевой и хенодеоксихолевой кислот составляет 1:1.

Суточный дебит первичных желчных кислот, по разным данным, колеблется от 300 до 1000 мг.

В физиологических условиях свободные ЖК практически не встречаются и секретируются преимущественно в виде конъюгатов с глицином и таурином. Конъюгаты желчных кислот с аминокислотами являются более полярными соединениями, чем свободные ЖК, что позволяет им легче сегрегироваться через мембрану гепатоцита. Кроме того, конъюгированные ЖК имеют меньшую критическую концентрацию мицеллообразования. Коньюгирование свободных желчных кислот осуществляется с помощью лизосомного фермента гепатоцита N-ацетилтрансферазы. Реакция протекает в два этапа при участии ATФ и в присутствии ионов магния. Соотношение глициновых и тауриновых конъюгатов желчных кислот составляет 3:1. Физиологическое значение конъюгированных желчных кислот заключается еще и в том, что, согласно последним данным, они способны влиять на процессы клеточного обновления. ЖК частично выделяются и в виде других конъюгатов - в соединении с глтокуроновой кислотой и в виде сульфатированных форм (при патологии). Сульфатирование и глюкуронирование желчных кислот приводит к уменьшению их токсических свойств и способствует экскреции с фекалиями и мочой. У больных с холестазом часто увеличивается концентрация сульфатированных и глюкуронированных конъюгатов желчных кислот.

Выведение желчных кислот в желчные капилляры происходит с помощью двух транспортных белков (см рис. 3.8):

Переносчика, обозначаемого как белок устойчивости ко многим лекарствам (multidrag resistance protein - MRP, MDRP), который переносит двухвалентные, глюкуронированные или сульфатированные конъюгаты желчных кислот;

Переносчика, обозначаемого как насос выведения желчных кислот (ПВЖК) (bile salt export pump, BSEP, кодируемый геном ABCB11), который переносит одновалентные ЖК (например, таурохолевую кислоту).

Синтез ЖК является устойчивым физиологическим процессом, генетические дефекты синтеза желчных кислот встречаются достаточно редко и составляют приблизительно 1-2% холестатических поражений у детей.

Последними исследованиями показано, что определенная часть холестатических поражений печени у взрослых также может быть связана с наследственным дефектом биосинтеза ЖК. Выявлены дефекты синтеза ферментов, осуществляющих модификацию холестерина как по классическому (холестерин 7α-гидроксилаза, CYP7A1), так и альтернативному пути (оксистерол 7α-гидроксилаза, CYP7B1), 3β-гидрокси-С27-стероид дегидрогеназа/изомераза, δ-4-3-оксмстероид 5β-редуктаза и др.). Для утих пациентов важен ранний диагноз, так как некоторые из них могут успешно лечиться диетой, дополненной желчными кислотами. При этом достигается двойной эффект: во-первых, замещаются отсутствующие первичные ЖК; во-вторых, регулируется синтез желчных кислот по принципу обратной связи, в результате чего снижается продукция гепатоцитами токсических промежуточных метаболитов.

В синтез ЖК могут вмешиваться различные гормоны и экзогенные вещества. Например, инсулин влияет на синтез ряда ферментов, таких как CYP7A1 и CYP27A1, а гормоны щитовидной железы вызывают генную транскрипцию СУР7А1 у крыс, хотя влияние гормонов щитовидной железы на регулирование CYP7A1 у людей еще остается спорным.

Недавними исследованиями установлено влияние различных препаратов на синтез желчных кислот: фенобарбитала, действующего через ядерный рецептор (CAR) и рифамницина через Х-рецептор (PXR), которые подавляют транскрипцию CYP7A1. Кроме того, установлено, что активность CYP7A1 подвержена суточным колебаниям и связана с ядерным рецептором гепатоцита HNF-4α. Синхронно с активностью CYP7A1 изменяется и уровень FGF-19 (фактор роста фибробластов).

Желчные кислоты влияют на процессы желчеобразования. При этом выделяют кислотозависимую и кислотонезависимую фракции желчи. Желчеобразование, зависимое от секреции желчных кислот, связано с количеством в желчных канальцах осмотически активных желчных кислот. Объем образующейся при этом желчи находится в линейной зависимости от концентрации желчных кислот и обусловлен их осмотическим эффектом. Образование желчи, не зависимое от желчных кислот, связано с осмотическим влиянием других веществ (бикарбонатов, транспортом ионов натрия). Имеется определенная взаимосвязь между этими двумя процессами желчеобразования.

На апикальной мембране холангиоцита в высокой концентрации выявлен белок, получивший в иностранной литературе сокращенное название CFTR (Cystic Fibrosis Transmembrane conductance Regulator). CFTR - мембранный белок, обладающий полифункциональностью, в том числе и оказывающий регуляторное влияние на хлорные каналы и секрецию бикарбонатов холангноцитами. Желчные кислоты как сигнальные молекулы влияют через эти механизмы на секрецию бикарбонатов.

Потеря белком CFTR способности влиять па функцию хлорных каналов приводит к тому, что желчь становится вязкой, развивается гепатоцеллюлярный и канальцевый холестаз, который приводит к целой серии патологических реакций: задержке гепатотоксических желчных кислот, продукции медиаторов воспаления, цитокинов и свободных радикалов, усилению перекисного окисления липидов и повреждению клеточных мембран, поступлению желчи в кровь и ткани и к уменьшению количества или даже отсутствию желчи в кишечнике.

На процессы холереза оказывают влияние глюкагон и секретин. Механизм действия глюкагона обусловлен его связыванием со специфическими глюкагоновыми рецепторами гепатоцита, а секретина - с рецепторами холангиоцитов. Оба гормона приводят к повышению опосредованной G-белком активности аденилатциклазы и увеличению внутриклеточного уровня цАМФ и активации цАМФ-зависимых Cl- и НCO3 секреторных механизмов. R результате происходит секреция бикарбонатов и увеличивается холерез.

Вслед за желчными кислотами выделяются электролиты и вода. Возможны 2 пути их транспорта: чресклеточный и околоклеточный. Считается, что основным является околоклеточный путь через так называемые плотные контакты.

Предполагается, что вода и электролиты из межклеточного пространства через плотные контакты проходят в желчные капилляры, а избирательность экскреции обусловлена наличием отрицательного заряда в месте плотного контакта, который является барьером для обратного заброса веществ из желчного капилляра в синусоидальное пространство. Желчные протоки также способны продуцировать жидкость, богатую бикарбонатами и хлоридами. Этот процесс регулируется в основном секретином и частично другими гастроинтестинальными гормонами. ЖК в составе желчи по внутри- и внепеченочным протокам попадают в желчный пузырь, где находится основная их часть, которая по мере необходимости поступает в кишечник.

При билиарной недостаточности, сопровождающей большинство заболеваний гепатобилиарной системы, нарушается синтез ЖК. Например, при циррозе печени наблюдается уменьшенное образование холевой кислоты. Поскольку бактериальное 7α-дегидроксилирование холевой кислоты в деокенхолевую при циррозе печени также нарушено, то отмечается уменьшение количества и деоксихолевой кислоты. Хотя при циррозе печени биосинтез хенодеоксихолевой кислоты протекает без повреждений, общий уровень ЖК вследствие уменьшения синтеза холевой кислоты уменьшается примерно наполовину.

Уменьшение общего количества ЖК сопровождается снижением их концентрации в тонкой кишке, что приводит к нарушению пищеварения. Хроническая билиарная недостаточность проявляется различными клиническими симптомами. Так, нарушение резорбции жирорастворимых витаминов может сопровождаться куриной слепотой (дефицит витамина А), остеопорозом или остеомаляцией (дефицит витамина D), нарушением свертывания крови (дефицит витамина К), стеатореей и другими симптомами.

Энтерогепатическая циркуляция

При приеме пищи желчь поступает в кишечник. Основное физиологическое значение ЖК заключается в эмульгировании жиров за счет уменьшения поверхностного натяжения, благодаря чему увеличивается площадь для действия липазы. Являясь поверхностно активными веществами, желчные кислоты в присутствии свободных жирных кислот и моноглицеридов адсорбируются на поверхности капелек жира и образуют тончайшую пленку, препятствующую слиянию мельчайших капелек жира и более крупные. Желчные кислоты ускоряют липолиз и усиливают абсорбцию жирных кислот и моноглицеридов в тонкой кишке, где под воздействием липаз и при участии солей ЖК образуемся мельчайшая эмульсия в виде липоидно-желчных комплексов. Эти комплексы активно всасываются энтероцитами, в цитоплазме которых происходит их распад, при этом жирные кислоты и моноглицериды остаются в энтероците, а ЖК в результате их активного транспорта из клетки поступают обратно в просвет кишки и вновь принимают участие в катаболизме и всасывании жиров. Эта система обеспечивает многократное и эффективное использование ЖК.

Тонкая кишка участвует в поддержании гомеостаза желчных кислот. Установлено. что фактор роста фибробластов 15 (FGF-15) - белок, выделяемый энтероцитом, в печени способен подавлять экспрессию гена, кодирующего холестерол-7α-гидроксилазу (CYP7A1, которая лимитирует скорость синтеза желчных кислот по классическому пути. Экспрессия FGF-15 в топкой кишке стимулируется желчной кислотой через ядерный рецептор FXR. В эксперименте показано, что у мышей, имеющих дефицит FGF-15, увеличивается активность холестерол-7α-гидроксилазы и фекальная экскреции желчных кислот.

Кроме того, ЖК активируют панкреатическую липазу, в связи с этим способствуют гидролизу и всасыванию продуктов переваривания, облегчают всасывание растворимых в жирах витаминов A, D, Е, К, а также усиливают перистальтику кишечника. При обтурационной желтухе, когда ЖК не поступают в кишечник, или при их потере через наружную фистулу более половины экзогенного жира теряется с калом, т.е. не всасывается.

Учитывая тот факт, что процесс желчеобразования непрерывен, за ночной период суток практически весь пул ЖК (около 4 г) находится в желчном пузыре. В го же время для нормального пищеварения в течение суток человеку необходимо 20-30 г желчных кислот. Это обеспечивается за счет энтерогепатической циркуляции (ЭГЦ) желчных кислот, суть которой заключается в следующем: желчные кислоты, синтезированные в гепатоците, через систему желчных протоков попадают в двенадцатиперстную кишку, где принимают активное участие в процессах метаболизма и всасывания жиров. Большая часть ЖК всасывается преимущественно в дистальном отделе тонкой кишки в кровь и через систему воротной вены вновь доставляется в печень, где реабсорбируется гепатоцитами и вновь выделяется с желчью, заканчивая энтерогепатический кругооборот (рис. 3.10). В зависимости от характера и количества принятой пищи количество энтерогепатических циклов в течение суток может достигать 5-10. При обтурации желчных путей ЭГЦ желчных кислот нарушается.

В нормальных условиях 90-95% ЖК подвергается обратному всасыванию. Реабсорбция происходит за счет как пассивного, так и активного всасывания в подвздошной кишке, а также пассивного обратного всасывания в толстой кишке. При этом илеоцекальный клапан и скорость перистальтики тонкой кишки регулируют скорость продвижения химуса, что в конечном итоге отражается на реабсорбции ЖК энтероцитами и их катаболизме бактериальной микрофлорой.

В последние годы доказана важная роль ЭГЦ желчных кислот и холестерина в билиарном литогенезе. При этом особое значение в нарушении ЭГЦ желчных кислот придается кишечной микрофлоре. При ненарушенной ЭГЦ желчных кислот лишь небольшая их часть (около 5-10%) теряется с фекалиями, что восполняется новым синтезом.

Таким образом, энтерогепатическая циркуляция ЖК имеет важное значение в обеспечении нормального пищеварения и только сравнительно небольшая их потеря с калом восполняется за счет дополнительного синтеза (примерно 300-600 мг).

Повышенные потери ЖК компенсируются усиленным синтезом в гепатоците, однако максимальный уровень синтеза не может превышать 5 г/сут, что может быть недостаточным при выраженном нарушении реабсорбции ЖК в кишечнике. При патологии подвздошной кишки или при ее резекции всасывание ЖК может резко нарушаться, что определяется по значительному увеличению их количества в кале. Снижение концентрации ЖК в просвете кишечника сопровождается нарушением абсорбции жиров. Аналогичные нарушения в энтерогепатической циркуляции ЖК происходят и при применении так называемых холатных (клешневидных) химических соединений, таких, например, как холестирамии. Ha энтерогепатическую циркуляцию ЖК влияют и невсасывающиеся антациды (рис. 3.11).

Примерно 10-20% ЖК минуют илеоцекальный клапан и поступают в толстую кишку, где метаболизируются ферментами анаэробной кишечной микрофлоры. Эти процессы имеют важное значение для полноценной энтерогепатической циркуляции ЖК, гак как конъюгированные ЖК плохо всасываются слизистой оболочкой кишечника.

Конъюгаты холевой и хенодеоксихолевой кислоты частично деконъюгируются (отщепляются аминокислоты таурин и глицин) и дегидроксидируются. в результате чего происходит образование вторичных желчных кислот. Кишечная микрофлора с помощью своих ферментов способна образовывать 15-20 вторичных желчных кислот. Из тригидроксилированной холевой кислоты образуется дигидроксилированная деоксихолевая кислота, а из дигидроксилированной хенодеоксихолевой кислоты - моногидроксилированная литохолевая кислота.

Деконъюгация позволяет ЖК повторно входить в энтерогепатическую циркуляцию через портальную систему, откуда они возвращаются в печень и вновь конъюгируются. Антибиотики, подавляя кишечную микрофлору, приводят к угнетению энтерогепатической циркуляции не только ЖК, но и других метаболитов, экскретируемых печенью и участвующих в энтерогепати ческой циркуляции, увеличивая их фекальную экскрецию и уменьшая содержание в крови. Например, уровень в крови и время полувыведения эстрогенов, содержащихся в контрацептивных средствах, уменьшается на фоне приема антибиотиков.

Литохолевая кислота наиболее токсичная, всасывается медленнее по сравнению с деоксихолевой. При замедлении пассажа содержимого кишечника количество всосавшейся литохолевой кислоты увеличивается. Биотрансформация ЖК с помощью микробных ферментов имеет важное значение для организма хозяина, так как позволяет им реабсорбироваться в толстой кишке вместо выведения с фекалиями. У здорового человека около 90% фекальных ЖК составляют вторичные желчные кислоты. Вторичные ЖК повышают секрецию натрия и воды в толстой кишке и могут принимать участие в развитии хологенной диареи.

Таким образом, эффективность энтерогепатической циркуляции желчных кислот достаточно высока и достигает 90-95%, а небольшая потеря их с калом легко восполняется здоровой печенью, обеспечивая общий пул желчных кислот на постоянном уровне.

При воспалительных заболеваниях тонкой кишки, особенно при локализации патологического процесса в терминальном отделе или при резекции этого отдела, развивается дефицит: ЖК. Последствия недостатка ЖК приводят к образованию холестериновых камней в желчном пузыре, диарее и стеаторее, нарушению всасывания жирорастворимых витаминов, образованию камней в почках (оксалатов).

Помимо известных механизмов действия ЖК установлено их участие во многих других процессах в организме. ЖК облегчают абсорбцию кальция в кишечнике. Кроме того, они обладают бактерицидным свойством, препятствующим избыточному бактериальному росту в тонкой кишке. В прошедшее десятилетие, ознаменовавшееся открытием ядерных рецепторов, таких как farnesoid X-rceeptor (FXR) и совсем недавно мембранного рецептора TGR-5 - белка со специфическими свойствами, способных взаимодействовать с ЖК, стала очевидной роль последних как сигнальных молекул с важными паракринными и эндокринными функциями. Установлено влияние ЖК на обмен тиреоидных гормонов: желчные кислоты, поступая из кишечника в системный кровоток, повышают термогенез. TCR-5. связывающий ЖК, обнаружен в бурой жировой ткани. В преадипоцитах ЖК могут не только изменять метаболизм, но и способствовать их дифференцировке в зрелые жировые клетки. Литохолевая и таурохолсвая кислоты являются наиболее мощными активаторами дейодиназы-2 в бурой жировой ткани - фермента, ответственного за превращение T1 в более активный T3.

Независимо от влияния ЖК на собственный синтез в печени и ЭГЦ они включаются в триггерный механизм адаптационной реакции на холестаз и другие повреждения печени. Наконец, установлена их роль в контроле общего энергия-связанного метаболизма, включая метаболизм глюкозы в печени.

Всасывание и внутриклеточный транспорт

За счет активного (с помощью натрийзависимого транспортера желчных кислот SLC10A2) и пассивного всасывания в кишечнике большинство желчных кислот попадает и систему воротной вены и поступает в печень, где практически полностью (99%) абсорбируются гепатоцитами. Только ничтожно малое количество желчных кислот (1%) попадает в периферическую кровь. Концентрация ЖК в воротной вене составляет 800 мкг/л, т.с. примерно в 6 раз выше, чем в периферической крови. После еды концентрация ЖК в системе воротной вены повышается от 2 до 6 раз. При патологии печени, когда снижается способность гепатоцита абсорбировать ЖК, последние в повышенной концентрации могут циркулировать в крови. В связи с этим определение концентрации ЖК имеет важное значение, так как может быть ранним и специфическим маркером заболевания печени.

Поступление ЖК из системы воротной вены происходит за счет натрийзависимой и натрийнезависимой транспортной системы, расположенной на синусоидной (базолатеральной) мембране гепатоцита. Высокая специфичность транспортных систем обеспечивает активное «перекачивание» ЖК из синусоида в гепатоцит и обусловливает их низкий уровень в опекающей из печени крови и плазме в целом, который составляет обычно ниже 10 ммоль/л у здоровых людей. Количество экстрагированных желчных кислот при первом их проходе составляет 50-90%, в зависимости от структуры желчной кислоты. При этом максимальная скорость поглощения печенью ЖК больше, чем транспортный максимум их экскреции.

Конъюгированные ЖК проникают в гепатоцит при участии натрийзависимого транс мембранного котранспортера (NTCP - Na-Taurocholate Cotransporting Protein, таурохолатный транспортный белок - SLCl0А1), а пеконъюгированные - преимущественно при участии транспортера органических анионов (ОATP - Organic Anion Transport Protein, белки-транспортеры органических анионов SLC21 А). Эти транспортеры позволяют продвигать ЖК из крови в гепатоцит против высокого градиента концентрации и электрического потенциала.

В гепатоците ЖК связываются с транспортными системами и в течение 1-2 мин доставляются к апикальной мембране. Внутриклеточное перемещение вновь синтезированных и поглощенных гепатоцитами ЖК. как отмечено выше, осуществляется с помощью двух транспортных систем. В просвет желчного капилляра ЖК секретируются при участии ATФ-зависимого механизма, транспортера - насоса выведения желчных кислот - см. рис. 3.8.

Последними исследованиями показано, что транспорт липидов, в том числе и желчных кислот, осуществляется с помощью транспортеров ЛВС - семейства, структурные особенности которых позволяют им связываться с белками и липидами клеточных мембран (син.: ATФ-связывающие кассетные транспортеры, MDRР, MRP). Эти транспортеры, объединенные в так называемую ЛТФ-зависимую кассету (ABC - ATP-Binding Cassette), обеспечивают активный транспорт и других компонентов желчи: холестерина - ABCG5/G8; желчных кислот - ABCB11; фосфолипидов - ABCB4 (см. рис. 3.2).

Желчные кислоты как амфифильные соединения в водной среде не могут существовать в мономолекулярной форме и образуют мицеллярные или ламеллярные структуры. Включение молекул липидов в мицеллы желчных кислот и образование смешанных мицелл - основная форма взаимодействия желчных кислот и липидов в желчи. При образовании смешанных мицелл нерастворимые в воде гидрофобные части молекул включаются во внутреннюю гидрофобную полость мицеллы. Путем образования смешанных мицелл желчные кислоты совместно с лецитином обеспечивают солюбилизацию холестерина.

Следует отметить, чт о желчные кислоты, образуя простые мицеллы, способны растворять в них лишь небольшую часть холестерина, но при образовании сложной мицеллы с участием лецитина эта способность значительно увеличивается.

Так, в отсутствие лецитина требуется приблизительно 97 молекул желчных кислот для рас творения 3 молекул холестерина. При наличии в мицелле лецитина пропорционально возрастает и количество растворенного холестерина, по это осуществляется только до определенного предела. Максимальная солюбилизация холестерина достигается при соотношении: 10 молекул холестерина, 60 молекул желчных кислот и 30 молекул лецитина, что является индикатором предела насыщения желчи холестерином.

Еще в середине 80-х годов прошлого века установлено, что значительная часть холестерина растворяется и транспортируется в содержащихся в желчи фосфолипидных пузырьках (везикулах), а не в мицеллах. При снижении тока желчи, зависимого от секреции желчных кислот (например, натощак), наблюдается увеличение транспорта холестерина, опосредуемого системой фосфолипидных пузырьков за счет мицеллярного транспорта, обратное соотношение наблюдается при увеличении в желчи концентрации желчных кислот.

Наличие фосфолипидных пузырьков может объяснить феномен относительно длительной стабильности холестерина, солюбилизированного в перенасыщенном его растворе. Вместе с тем в концентрированной, перенасыщенной холестерином желчи фосфолипидные пузырьки содержат повышенную концентрацию холестерина; эти растворы отличаются меньшей стабильностью и большей склонностью к нуклеации, чем разведенные растворы желчи, содержащие фосфолипидные пузырьки с низкой концентрацией холестерина. Стабильность фосфолипидных пузырьков снижается также при увеличении в желчи соотношения желчные кислоты/фосфолипиды и при наличии в растворе ионизированного кальция. Агрегация фосфолипидных пузырьков желчи может быть ключевым феноменом процесса нуклеации холестерина.

Смесь желчных кислот, лецитина и холестерина при определенных соотношениях молекул способна образовывать ламеллярные жидкокристаллические структуры. Пропорция смешанных мицелл и везикул желчи зависит от концентрации и состава желчных кислот.

Работа транспортеров основных компонентов желчи регулируется по принципу отрицательной обратной связи, и при повышении концентрации желчных кислот в протоках их экскреция из гепатоцита замедляется или прекращается.

Для выравнивания осмотического равновесия и достижения электронейтральности вслед за ЖК в желчный каналец выделяются вода и электролиты. При этом, как было сказано выше, ЖК влияют на кислотозависимую фракцию желчи. С экскрецией ЖК в желчные канальцы связан транспорт лецитина и холестерина, по не транспорт билирубина.

Болезни печени могут приводить к нарушению синтеза, конъюгации и экскреции ЖК, а также поглощения их из системы воротной вены.

Желчные кислоты как детергенты

Вследствие амфифильных особенностей ЖК могут вести себя как детергенты, которые во многих случаях являются причиной повреждения при накоплении их в печени и других органах. Гидрофобные свойства желчных кислот и связанная с ними токсичность нарастают в следующем порядке: холевая кислота → урсодеоксихолевая кислота → хенодеоксихолевая кислота → деоксихолевая кислота → литохолевая кислота. Эта связь гидрофобности и токсичности желчных кислот обусловлена тем, что гидрофобные кислоты липофилъны, что дает им возможность проникать в липидные слои, в том числе в клеточные мембраны и мембраны митохондрий, вызывать нарушение их функций и гибель. Наличие транспортных систем позволяет ЖК быстро покидать гепатоцит и избегать его повреждения.

При холестазе происходит повреждение печени и желчных путей непосредственно гидрофобными ЖК. Однако в ряде случаев это происходит и при нарушении транспорта другой составной части желчи - фосфатидилхолина. Так, при холестазе, известном как PF1C тип 3 (Progressive familial intrahepatic cholcstasis, прогрессирующий семейный внутрипеченочный холестаз - ПСВПХ) вследствие дефекта в MDR3 (генный символ АВСВ4) нарушается транслокация фосфолипидов, главным образам фосфатидилхолина, с внутреннею на внешний листок капаликулярной мембраны. Дефицит в желчи фосфатидилхолина, обладающего буферными свойствами и являющегося «компаньоном» желчных кислот, приводит к разрушению ЖК апикальных мембран гепатоцитов и эпителия желчных протоков и. как следствие, к повышению в крови активности ГГТП. Как правило, при ПСВПХ в течение нескольких лет (в среднем 5 лет) происходит формирование цирроза печени.

Повышенная внутриклеточная концентрация ЖК, аналогичная возникающей при холестазе. может быть связана с оксидантным стрессом и апоптозом и отмечалась как во взрослой, так и в эмбриональной печени. Следует отметить, что ЖК могут вызывать аноптоз двумя путями - как прямой активацией Fas-рецепторов, так и через окислительное повреждение, которое провоцирует дисфункцию митохондрий и в конечном итоге гибель клетки.

Наконец, существует зависимость между ЖК и клеточной пролиферацией. Некоторые разновидности ЖК модулируют синтез ДНК во время регенерации печени после частичной гспатэктомии у грызунов, и заживление зависит от желчной кислоты, сигнализирующей через ядерный рецептор FXR. Имеются сообщения о тератогенном и канцерогенном эффекте гидрофобных желчных кислот раке толстой кишки, пищевода и даже вне желудочно-кишечного тракта, У мышей, имеющих дефицит FXR, спонтанно развиваются опухоли печени.

Немногочисленные данные о роли ЖК в онкогенезе билиарного тракта противоречивы, и результаты исследований зависят от многих факторов: методов получения желчи (назобилиарное дренирование, чрескожное чреспеченочное дренирование желчных путей, пункция желчного пузыря во время оперативного вмешательства и др.). методов определения ЖК в желчи, подбора больных. контрольных групп и т.д. По данным J.Y. Park и соавт., суммарная концентрация желчных кислот при раке желчного пузыря и желчных протоков была ниже по сравнению с контролем и мало отличалась от таковой у больных с холецисто- и холедохолитиазом, содержание вторичных ЖК - деоксихолевой и литохолевой, «подозреваемых» в канцерогенезе, также было ниже по сравнению с контролем. Высказывалось мнение, что низкая концентрация вторичных ЖК в желчи связана с обструкцией желчных путей опухолью или камнем и невозможностью первичных ЖК достичь кишечника, чтобы трансформироваться во вторичные ЖК. Однако уровень вторичных ЖК не повышался и после устранения механического препятствия. В связи с этим появились сведения, указывающие на го, что сочетание обструкции и воспаления в желчных путях влияет на экскрецию ЖК. В эксперименте на животных показано, что перевязка общего желчного протока снижает экспрессию транспортера желчных кислот и НВЖК, а провоспалительные цитокины усугубляют этот процесс. Однако нельзя исключить, что более длительный контакт холангиоцитов с токсичными ЖК вследствие обструкции желчный путей может усиливать влияние других канцерогенных веществ.

Многочисленные исследования подтверждают, что при дуоденогастральном и гастроэзофагеальном рефлюксс рефлюктат, содержащий гидрофобные ЖК, оказывает повреждающее действие на слизистую оболочку желудка и пищевода. В то время как УДХК, обладающая гидрофильными свойствами, - цитопротекторный эффект. Ho последним данным, гликоурсодеоксихолевая кислота вызывает цитопротекторный эффект при пищеводе Барретта за счет уменьшения оксидантного стресса и ингибирования цитопагогенного влияния гидрофобных желчных кислот.

Обобщая результаты последних исследований, в том числе на молекулярном уровне, можно заключить, что наши представления о функциональной роли желчных кислот в организме человека существенно расширились. В обобщенном виде их можно представить следующим образом.

Общее влияние

Элиминация холестерина из организма.

Печень

Гепатоциты:

Способствуют транспорту фосфолипидов;

Индукция секреции липидов желчи;

Способствуют митозу во время регенерации печени;

По типу отрицательной обратной связи влияют на собственный синтез путем активации рецепторов FXR (желчные кислоты - естественные лиганды для FXR), ингибирующих транскрипцию гена, ответственного за синтез холестерол-7α-гидроксилазы (CYP7A1) и тем самым оказывают супрессивное влияние на биосинтез желчных кислот в гепатоците.

Эндотелиальные клетки:

Регулирование печеночного кровотока через активацию мембранного рецептора TGR-5.

Билиарный тракт

Просвет желчных протоков:

Солюбилизация и транспорт холестерина и органических анионов;

Солюбилизация и транспорт катионов тяжелых металлов.

Холангиоциты:

Стимуляция секреции бикарбонатов через CFTR и АЕ2;

Способствуют пролиферации при билиарной обструкции.

Полость желчного пузыря:

Солюбилизация липидов и катионов тяжелых металлов.

Эпителий желчного пузыря:

Модуляция секреции цАМФ через G-рецептор, в результате чего повышается активность аденилатциклазы и увеличивается внутриклеточный уровень цАМФ, что сопровождается увеличением секреции бикарбонатов;

Способствует секреции муцина.

Тонкая кишка

Просвет кишки:

Мицеллярная солюбилизация липидов;

Активируют липазу;

Антибактериальные эффекты;

Денатурация бел кои пищи, приводящая к ускоренному протеолизу.

Энтероцит подвздошной кишки:

Регуляция экспрессии генов через активацию ядерных рецепторов;

Участие в гомеостазе желчных кислот через выделение энтероцитом FGF-15 - белка регулирующего биосинтез желчных кислот в печени.

Эпителий подвздошной кишки:

Секреция антимикробных факторов (через активацию FXR).

Толстая кишка

Эпителий толстой кишки:

Способствует абсорбция жидкости при низкой концентрации желчи;

Индуцирует секрецию жидкости в просвет кишки при высокой концентрации желчи.

Мышечная оболочка толстой кишки:

Способствует дефекации, увеличивая пропульсивиую моторику.

Бурая жировая ткань

Адипоциты:

Влияют па термогенсз через TGR-5.

Tаким образом, исследования последних лет существенно расширили наши знания о физиологической роли желчных кислот в организме, и в настоящее время они уже не ограничиваются представлением только об участии их в процессах пищеварения.

Терапевтические эффекты желчных кислот

Накопленные данные, свидетельствующие о влиянии ЖК на различные звенья патологических процессов в организме человека, позволили сформировать показания к использованию ЖК в клинике. Литолитический эффект ЖК дал возможность применять их для растворения холестериновых камней в желчном пузыре (рис. 3.12).

Хенодеоксихолевая кислота была первой, которая использовалась для растворения желчных камней. Под влиянием ХДХК происходит выраженное снижение активности ГМГ-КоА-рсдуктазы, участвующей в синтезе холестерина, восполнение дефицита ЖК и изменение соотношения желчных кислот и холестерина благодаря превалированию в общем пуле желчных кислот ХДХК. Перечисленные механизмы определяют эффект ХДХК при растворении желчных камней, состоящих преимущественно из холестерина. Однако последующие наблюдения показали, что она вызывает ряд существенных побочных эффектов, значительно ограничивающих применение ее с лечебной целью. Среди них наиболее частые - повышение активности амниотрансфераз и диарея. К неблагоприятным факторам ХДХК следует отнести и снижение активности холестерол-7α-гидроксилазы.

В связи с этим в настоящее время при гепатобилиарной патологии в основном применяется УДХК (урсосан), клинические эффекты которой за более чем 100-летнюю историю достаточно хорошо изучены и постоянно пополняются.

Основные эффекты УДХК (урсосан):

1. Гепатопротекторный. Защищает клетки печени от гепатотокснческих факторов за счет стабилизации структуры мембраны гепатоцитов.

2. Цитопротекторный. Защищает холангиоциты и эпителиоциты слизистой оболочки пищевода, желудка от агрессивных факторов, в том числе и от эмульгирующего действия гидрофобных желчных кислот за счет встраивания в фосфолипидный бислой мембран; регулирует проницаемость митохондриальной мембраны, текучесть мембран гепатоцитов.

3. Антифибротический . Предупреждает развитие фиброза печени - снижает выброс цитохрома С, ЩФ и лактатдегндрогеназы, подавляет активность звездчатых клеток и перисинусоидное коллагеиообразование.

4. Иммуномодулирующий. Уменьшает аутоиммунные реакции против клеток печени и желчных путей и подавляет аутоиммунное воспаление. Снижает экспрессию антигенов гистосовместимости: HLA-1 на гепатоцитах и HLA-2 на холангиоцитах, уменьшает образование сенсибилизированных к печеночной ткани цитотоксических Т-лимфоцитов, снижает «атаку» иммуноглобулинами клеток печени, снижает продукцию провосцалительных цитокинов (IL-1, LL-6, ИФН-у) и др.

5. Антихолестатический. Обеспечивает транскрипционную регуляцию ка-наликулярных транспортных белков, улучшает везикулярный транспорт, устраняет нарушение целостности канальцев, таким образом, уменьшает кожный зуд, улучшает биохимические показатели и гистологическую картину печени.

6. Гиполипидемический. Регулирует холестериновый обмен путем как снижения всасывания холестерина в кишечнике, так и вследствие уменьшения его синтеза в печени и экскреции в желчь.

7. Антиоксидантный. Предупреждает оксидантное повреждение клеток печени и желчных путей - блокирует высвобождение свободных радикалов, подавляет процессы перекисиого окисления липидов и др.

8. Aнти- и проапиптический. Подавляет избыточный апоптоз клеток печени и желчных путей и стимулирует апоптоз в слизистой оболочке толстой кишки и предупреждает развитие колоректального рака.

9. Литолитический. Снижает литогенность желчи вследствие формирования жидких кристаллов с молекулами холестерина, предупреждает образование и способствует растворению холестериновых камней.

  • Контрольные вопросы к экзамену учебной дисциплины «Биохимия»
  • 2.Уровни структурной организации белков: первичная, вторичная, третичная, четвертичная, домены, надмолекулярные структуры
  • 3. Связь свойств, функций и активности белков с их структурной организацией (специфичность, видовая принадлежность, эффект узнавания, динамичность, эффект кооперативного взаимодействия).
  • 4. Факторы повреждения структуры и функции белков, роль повреждений в патогенезе заболеваний. Протеинопатии.
  • 5. Первичная структура белков. Зависимость свойств и функций белков от их первичной структуры. Изменения первичной структуры, протеинопатии.
  • 6. Роль протеомики в оценке патологических состояний
  • 7.Миоглобин и гемоглобин. Конформационные изменения и кооперативные взаимодействия субъединиц гемоглобина. Эффект Бора. Роль 2,3 –бифосфоглицерата.
  • 9. Кинетика ферментативных реакций. Уравнение Михаэлиса – Ментона. Преобразование Лайнуивера – Бэрка
  • 10. Строение ферментов. Кофакторы и коферменты. Активный центр, строение, функции, связь со специфичностью действия ферментов. Возможность изменения специфичности (трансформация).
  • 11. Международная классификация и номенклатура ферментов. Шифр ферментов. Классификация ферментов по их локализации в органах и клетках (компартментализация).
  • 12. Ингибирование активности ферментов: обратимые, необратимые, конкурентные, неконкурентное. Принцип приме­нения лекарственных препаратов, основанный на ингибировании ферментов (примеры).
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические
  • 2. Необратимые ингибиторы ферментов как
  • 14. Аллостерическая регуляция. Ингибирование по принципу обратной связи.
  • 15. Регуляция активности и количества ферментов (аллостерическая, регуляция путем фосфорилирования и дефосфорилирования, ограниченного протеолиза проферментов)
  • 16. Первичные и вторичные ферментопатии. Биохимические механизмы развития патологий. Примеры заболеваний.
  • 17. Энзимодиагностика и энзимотерапия. Ингибиторы ферментов как лекарственные препараты
  • 18. Зависимость скорости ферментативных реакций от температуры, рН, концентрации субстратов (индукция и репрессия ферментов). Индукция к лекарственным веществам.
  • 19. Кофакторы и коферменты. Водорастворимые витамины, как предшественники коферментов. Металлоферменты и ферменты, активируемые металлами
  • 1. Роль металлов в присоединении субстрата
  • 2. Роль металлов в стабилизации третичной
  • 3. Роль металлов в ферментативном
  • 4. Роль металлов в регуляции активности
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • Модуль II. Введение в обмен веществ. Биологическое окисление
  • 20. Основные пищевые вещества. Суточная потребность. Незаменимые факторы питания
  • 21.Переваривание основных пищевых веществ (жиров, белков, углеводов), ферменты пищеварительных соков. Наследственная непереносимость пищевых веществ.
  • 22. Витамины. Классификация, функции. Алиментарные и вторичные авитаминозы и гиповитаминозы, их следствия, подходы к профилактике.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 4. Нарушения переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 24. Биологическое окисление. Особенности, функции. Макроэргические соединения. Синтез атф. Аэробный и субстратный типы окислительного фосфорилирования Превращение метаболической энергии в тепло.
  • 25. Характеристика мультиферментных комплексов цепи переноса электронов. Структурная организация дыхательной цепи, ее функции (энергетическая, терморегуляторная) и место в системе дыхания
  • 28. Микросомальное окисление, его организация, биологическая роль, связь с условиями внеш­ней среды. Возможные побочные эффекты.
  • 30. Механизм защиты от токсического действия кислорода. Антиоксидантная система
  • 2. Антиоксидантная система
  • 32. Нарушения энергетического обмена, причины. Гипоэнергетические (энергодефицитные) состояния, их причины и последствия.
  • Гипоэнергетические состояния
  • 33. Окислительное декарбоксилирование пировиноградной кислоты. Строение пируватдегидрогеназного комплекса, роль витамина в-1
  • 34. Цикл лимонной кислоты (цикл Кребса), последовательность реакций, характеристика окислительных ферментов, связь с цепью переноса электронов, энергетическая и пластическая функции.
  • Модуль III. Обмен и функции углеводов
  • 35. Метаболизм фруктозы и галактозы, связь с онтогенезом. Галактоземия, фруктозурия.
  • 37. Гликолиз, последовательность реакций, связь с общими путями катабо­лизма (полное аэробное окисление глюкозы). Физиологическая роль процесса.
  • 38. Анаэробное окисление глюкозы (анаэробный гликолиз), последовательность реакций, физиологическое значение, регуляция. Судьба молочной кислоты.
  • 39. Метаболизм фруктозы и галактозы, связь с онтогенезом. Галактоземия, фруктозурия.
  • 40. Пентозофосфатный путь превращения глюкозы, окислительные реакции, энергетическая функция, образование восстановительных эквивалентов и рибозы.
  • 41. Глюконеогенез. Ключевые реакции, роль пирувата, лактата, аминокислот. Значение про­цесса, регуляция. Роль биотина.
  • 42. Синтез и распад гликогена: биологическое значение процесса. Зависимость от ритма питания. Регуляция. Гликогенозы и агликогенозы.
  • 43. Поддержание физиологического уровня глюкозы в крови. Цикл Кори и глюкозо-аланиновый цикл.
  • 44. Гипо- и гипергликемия, почечный порог для глюкозы, глюкозурия. Толерантность к глюкозе.
  • 45. Особенности обмена глюкозы в различных тканях (мышцы, эритроциты, мозг, жировая ткань, печень). Зависимость путей использования глюкоза от ритма и характера питания.
  • Модуль IV. Структура, функция и обмен липидов. Биологические мембраны, строение, функции
  • 47. Повреждение мембран, связь с развитием болезней. Основные повреждающие фак­торы. Перекисное окисление липидов (пол). Роль неблагоприятной экологической обстановки в активации этого процесса.
  • 49. Ненасыщенные и полиненасыщенные (пнжк) жирные кислоты. Зависимость их концентрации от питания. W-3 и w-6 жирные кислоты как предшественники синтеза эйкозаноидов, простагландинов и лейкотриенов.
  • 50. Транспортные липопротеины крови, особенности строения, функции. Апобелки. Роль липопротеинлипазы и лецитин-холестерин-ацилтрансферазы (лхат).
  • 51.Метаболизм плазменных липопротеинов. Атерогенные и антиатерогенные липопротеины. Дислипопротеинемии, гиперли­по­протеинемии. Атеросклероз. Коэффициент атерогенности.
  • 52. Различия синтеза триацилглицеринов (таг) в печени и жировой ткани. Взаимопревращение глицерофосфолипидов. Жировое перерождение печени. Липотропные факторы.
  • 53. Депонирование и мобилизация жиров, биологическая роль процессов, зависимость от ритма питания и физической нагрузки. Гормональная регуляция липолиза и липогенеза.
  • 55. Синтез и использование кетоновых тел. Гиперкетонемия, кетонурия, ацидоз при сахарном диабете и голодании.
  • 56. Синтез и функции холестерина. Образование мевалоновой кислоты. Регуляция процесса, гмг-КоА-редуктаза. Транспорт и выведение холестерина из организма.
  • 57. Обмен полиненасыщенных жирных кислот. Образование эйкозаноидов, строение, номенклатура, биосинтез, биологическая роль.
  • 58. Желчь, желчные кислоты (первичные и вторичные). Желчные мицеллы их образование и роль Применение хенодезоксихолевой кислоты для лечения болезни.
  • Модуль V. Обмен белков и аминокислот
  • 2. Оксидаза l-аминокислот
  • 3. Оксидаза d-аминокислот
  • 3. Биологическое значение трансаминирования
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 1. Реакции синтеза мочевины
  • 2. Энергетический баланс процесса
  • 3. Биологическая роль орнитинового цикла
  • Модуль VI. Обмен и функции нуклеиновых кислот. Матричные биосинтезы.
  • Модуль VII. Гормоны. Гормональная регуляция метаболических процессов
  • 81. Гормоны поджелудочной железы. Строение, образование, механизм действия инсулина и глюкагона.
  • 82. Кальций и фосфор. Биологические функции, распределение в организме. Регуля­ция обмена, участие паратгормона, кальцитонина и активных форм витамина d.
  • 83. Гормоны коры надпочечников: минерало - и глюкокортикоиды. Строение, синтез. Влияние на водно-солевой обмен, обмен белков, липидов и углеводов.
  • 84. Йодсодержащие гормоны, строение, биосинтез, Влияние на обмен веществ. Изменения обмена при гипертиреозе и гипотиреозе.
  • 85. Адреналин. Строение, биосинтез, биологическая роль.
  • 86. Гормоны передней доли гипофиза, строение, место в системе регуляции. Биологическая роль.
  • 87. Гормоны задней доли гипофиза (вазопрессин и окситоцин), строение, биологическая роль.
  • 88. Половые гормоны: мужские и женские, влияние на обмен веществ.
  • 89. Гипер- и гипопродукция гормонов (разобрать на примерах гормонов щитовидной железы, надпочечников). Модуль VIII. Биохимия крови и мочи
  • 90. Общий белок и белковый спектр плазмы крови. Альбумины и глобулины их функции, гипо - и гиперпро­теи­не­мия, диспротеинемии, парапротеинемии.
  • 92.Каликреин-кининовая система, синтез кининов, биологическая роль.
  • 93. Форменные элементы крови. Особенности метаболизма в эритроцитах и лейкоцитах. Биохимические ме­ха­низмы, обеспечивающие резистентность эритроцита.
  • 94. Синтез гема и гемоглобина. Регуляция этих процессов. Вариации первичной структуры и свойств гемоглобина. Гемо­глобино­патии.
  • 95. Железо. Транспорт, депонирование, функции, обмен. Нарушения обмена: железо­дефицитная анемия, гемосидероз, гемохроматоз.
  • 96.Дыхательная функция кро­ви. Молекулярные механизмы газообмена в легких и тканях. Факторы, влияющие на насыщение гемоглобина кислородом. Карбоксигемоглобин, метгемоглобин.
  • 97.Ферменты крови «собственные» и поступающие при повреждении клеток. Диагностическая ценность анализа белков и ферментов крови

58. Желчь, желчные кислоты (первичные и вторичные). Желчные мицеллы их образование и роль Применение хенодезоксихолевой кислоты для лечения болезни.

Учебник Т. Т. Березова стр. 436-437

Же́лчные кисло́ты - монокарбоновые гидроксикислоты из класса стероидов .

Желчные кислоты - производные холановой кислоты С23Н39СООН, отличающиеся тем, что к её кольцевой структуре присоединены гидроксильные группы.

Основными типами желчных кислот, имеющимися в организме человека, являются так называемые первичные желчные кислоты (первично секретируемые печенью): холевая кислота (3α, 7α, 12α-триокси-5β-холановая кислота) и хенодезоксихолевая кислота (3α, 7α-диокси-5β-холановая кислота), а также вторичные (образуются из первичных желчных кислот втолстой кишке под действием кишечной микрофлоры ): дезоксихолевая кислота (3α, 12α-диокси-5β-холановая кислота), литохолевая (3α-маноокси-5β-холановая кислота), аллохолевая иурсодезоксихолевая кислоты. Из вторичных в кишечно-печёночной циркуляции во влияющем на физиологию количестве участвует только дезоксихолевая кислота, всасываемая в кровь и секретируемая затем печенью в составе желчи.

Аллохолевая, урсодезоксихолевая и литохолевая кислоты являются стереоизомерами холевой и дезоксихолевой кислот.

Все желчные кислоты человека имеют в составе своих молекул 24 атома углерода .

В желчи желчного пузыря человека желчные кислоты представлены так называемыми парными кислотами : гликохолевой , гликодезоксихолевой , гликохенодезоксихолевой ,таурохолевой , тауродезоксихолевой и таурохенодезоксихолевой кислотой - соединениями (конъюгатами ) холевой, дезоксихолевой и хенодезоксихолевой кислот с глицином итаурином .

Несомненно, самым важным ферментом для переваривания триглицеридов является панкреатическая липаза, представленная в большом количестве в соке поджелудочной железы, достаточном для переваривания в течение 1 мин всех поступивших триглицеридов. Стоит добавить, что энтероциты тонкого кишечника тоже содержат немалое количество липазы, известной как кишечная липаза, но обычно она не используется. Конечные продукты переваривания жиров. Большинство триглицеридов пищи расщепляются панкреатической липазой на свободные жирные кислоты и 2-моноглицериды. Формирование мицелл. Гидролиз триглицеридов - высокообратимый процесс, поэтому накопление моноглицеридов и свободных жирных кислот по соседству с перевариваемым жиром быстро блокирует дальнейшее его переваривание. Но желчные соли играют важную вспомогательную роль в практически моментальном извлечении моноглицеридов и свободных жирных кислот сразу после образования конечных продуктов переваривания. Происходит этот процесс следующим образом. Желчные соли при их высокой концентрации в воде имеют предрасположенность формировать мицеллы, которые представляют собой сферические цилиндрические глобулы 3-6 нм в диаметре, состоящие из 20-40 молекул желчных солей. Каждая молекула содержит стероидное жирорастворимое ядро и водорастворимую полярную группу. Стероидное ядро включает продукты переваривания жира, формируя маленькую жировую каплю в середине итоговой мицеллы с полярной группой желчных солей, выходящей наружу и закрывающей поверхность мицеллы. В связи с тем, что эти полярные группы имеют отрицательный заряд, они позволяют целой глобулярной мицелле растворяться в жидкой водорастворимой пищеварительной среде и сохранять стабильность раствора, пока жиры не всосутся в кровь. Мицеллы желчных солей также выполняют функцию транспортных посредников для переноса моноглицеридов и свободных жирных кислот к щеточной каемке кишечного эпителия, иначе моноглицериды и свободные жирные кислоты будут нерастворимы. Здесь моноглицериды и свободные жирные кислоты всасываются в кровь (как будет изложено далее), а желчные соли высвобождаются обратно в химус, чтобы быть вновь использованными для процесса переноса. Переваривание эфиров холестерола и фосфолипидов. Большая часть холестерола пищи находится в виде эфиров холестерола, которые формируются из свободного холестерола и одной молекулы жирной кислоты. Фосфолипиды в своем составе также содержат жирную кислоту. Эфиры холестерола и фосфолипиды гидролизуются панкреатическим секретом с помощью двух других липаз, которые освобождают жирные кислоты: фермента холестеролэфиргидролазадяя гидролиза эфира холестерола и фермента фосфолипаза А2, гидролизующего фосфолипиды. Мицеллы желчных солей при переваривании играют ту же роль в переносе молекул свободного холестерола и фосфолипидов, что и при переносе моноглицеридов и свободных жирных кислот. По существу без работы мицелл не произойдет всасывания ни одной молекулы холестерола.

Хенодезоксихолевая кислота - важнейшая желчная кислота в физиологии человека

Хенодезоксихолевая кислота, наряду с холевой, является важнейшей для физиологии человека желчной кислотой.

Хенодезоксихолевая кислота является так называемой первичной желчной кислотой, образующейся в гепатоцитах печени при окислении холестерина. В норме хенодезоксихолевая кислота составляет 20–30% общего пула желчных кислот. Объём продукции хенодезоксихолевой кислоты у взрослого здорового человека от 200 до 300 мг в сутки. В желчном пузыре хенодезоксихолевая кислота присутствуют главным образом в виде конъюгатов - парных соединений с глицином и таурином, называемых, соответственно, гликохенодезоксихолевой и таурохенодезоксихолевой кислотами.

Хенодезоксихолевая кислота - лекарственный препарат

Хенодезоксихолевая кислота (лат. chenodeoxycholic acid) - фармацевтическое средство для лечения заболеваний желчного пузыря (код АТХ A05AA01). Способствует растворению желчных камней.

Показания к применению хенодезоксихолевой кислоты. Холестериновые желчные камни размером не более 15-20 мм в желчном пузыре, заполненном камнями не более чем наполовину, при невозможности их удаления хирургическим или эндоскопическим методами.

Выбор редакции
В зависимости от вида штрафа, в 1С 8.3 применяется различный порядок отражения в учете. Рассмотрим наиболее распространённые ситуации. На...

1. Для начала необходимо отобрать початки кукурузы. Они должны быть одинакового размера и не очень крупные. Именно поэтому лучше отдать...

Скумбрия тушеная — общие принципы приготовления Тушеная скумбрия – простое в приготовлении, вкусное и очень полезное блюдо. Для него не...

Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
С наступлением поста многие из нас задаются вполне обоснованными вопросами. Например, таким: «Можно ли есть в пост морепродукты?» Здесь...
Карп – один из символов водной стихии. Кроме того, эта рыба во многих культурах наделяется особыми свойствами. К примеру, на востоке...
Две недели назад 36-летняя Анастасия Мыскина объявила о расставании с гражданским мужем, политиком и бизнесменом Сергеем Мамедовым....
Почти у всех людей, изучающих английский язык, возникают трудности при изучении грамматики. И речь идет не только о понимании правил...