Содержание гликогена. Что такое гликоген в мышцах? Нужен ли он для похудения? Гликоген в продуктах питания


Гликоген является сложным, комплексным углеводом, который в процессе гликогенеза образуется из глюкозы, поступающей в организм человека вместе с пищей. С химической точки зрения он определяется формулой C6H10O5 и представляет собой коллоидальный полисахарид, имеющий сильно разветвленную цепь из остатков глюкозы. В этой статье мы расскажем все про гликогены: что это такое, каковы их функции, где они запасаются. Также мы опишем, какие бывают отклонения в процессе их синтезирования.

и как они синтезируются?

Гликоген является необходимым организму резервом глюкозы. В организме человека он синтезируется следующим образом. Во время приема пищи углеводы (в том числе крахмал и дисахариды - лактоза, мальтоза и сахароза) под действием фермента (амилазы) расщепляются на мелкие молекулы. Затем в тонком кишечнике такие ферменты, как сахараза, панкреатическая амилаза и мальтаза осуществляют гидролиз углеводных остатков до моносахаридов, в том числе и глюкозы.

Одна часть высвобожденной глюкозы, поступив в кровоток, направляется в печень, а другая транспортируется в клетки других органов. Непосредственно в клетках, в том числе и в мышечных, происходит последующий распад моносахарида глюкозы, который называется гликолиз. В процессе гликолиза, происходящего с участием или без участия (аэробный и анаэробный) кислорода синтезируются молекулы АТФ, которые являются источником энергии во всех живых организмах. Но не вся глюкоза, попадающая с пищей в организм человека, расходуется на Часть ее запасается в форме гликогена. Процесс гликогенеза предполагает полимеризацию, то есть последовательное присоединение друг к другу мономеров глюкозы и формирование полисахаридной разветвленной цепи под воздействием специальных ферментов.

Где находится гликоген?

Хранится полученный гликоген в виде особых гранул в цитоплазме (цитозоле) многих клеток организма. Особенно велико содержание гликогена в печени и мышечной ткани.

Причем мышечный гликоген - это источник запаса глюкозы для самой мышечной клетки (в случае сильной нагрузки), а печеночный поддерживает нормальную концентрацию глюкозы в крови. Также запас этих сложных углеводов имеется в нервных клетках, клетках сердца, аорты, эпителиальных покровов, соединительной ткани, слизистой оболочки матки и эмбриональных тканей. Итак, мы рассмотрели, что понимается под термином "гликогены". Что это такое, теперь понятно. Далее поговорим про их функции.

Для чего необходимы организму гликогены?

В организме гликоген служит в качестве энергетического резерва. В случае острой необходимости организм сможет получить из него недостающую глюкозу. Как это происходит? Распад гликогена осуществляется в периодах между приемами пищи, а также значительно ускоряется во время серьезной физической работы. Этот процесс происходит путем отщепления глюкозных остатков под воздействием особых ферментов. В итоге гликоген распадается до свободной глюкозы и глюкозо-6-фосфата без затрат АТФ.

Зачем нужен гликоген в печени?

Печень является одним важнейших внутренних органов человеческого тела. Она выполняет множество разнообразных жизненно необходимых функций. В том числе обеспечивает необходимый для функционирования головного мозга. Главными механизмами, при помощи которых осуществляется поддержание глюкозы в нормальном диапазоне - от 80 до 120 мг/дл, являются липогенез с последующим распадом гликогена, глюконеогенез и трансформация других сахаров в глюкозу.

При понижении уровня сахара в крови происходит активизация фосфорилазы, и тогда гликоген печени расщепляется. Из цитоплазмы клеток исчезают его скопления, и глюкоза поступает в кровь, давая организму необходимую энергию. При повышении уровня сахара, к примеру после приема пищи, клетки печени начинают активно синтезировать гликоген и депонировать его. Глюконеогенез представляет собой процесс синтезирования печенью глюкозы из других веществ, в том числе и аминокислот. Регуляторная делает ее критически необходимым для нормальной жизнедеятельности органа. Отклонения - значительные повышения/понижения уровня глюкозы в крови - представляют для здоровья человека серьезную опасность.

Нарушение синтеза гликогена

Нарушения обмена гликогена представляют собой группу наследственных Их причинами являются различные дефекты ферментов, непосредственно участвующих в регуляции процессов образования или расщепления гликогенов. Среди гликогеновых заболеваний выделяют гликогенозы и агликогенозы. Первые представляют собой редкие наследственные патологии, обусловленные чрезмерным накоплением полисахарида C6H10O5 в клетках.

Синтез гликогена и его последующее избыточное нахождение в печени, легких, почках, скелетных и сердечной мышцах вызываются дефектами ферментов (например, глюкоза-6-фосфатазы), участвующих в распаде гликогена. Чаще всего при гликогенозе наблюдаются нарушения развития органов, задержка психомоторного развития, тяжелые гипогликемические состояния, вплоть до наступления комы. Для подтверждения диагноза и определения типа гликогеноза проводят и мышц, после чего отправляют полученный материал на гистохимическое исследование. В ходе него устанавливают содержание гликогена в тканях, а также активность ферментов, способствующих его синтезу и распаду.

Если в организме отсуствуют гликогены, что это значит?

Агликогенозы представляют собой тяжелое наследственное заболевание, вызванное отсутствием фермента, способного осуществлять синтез гликогена (гликогенсинтетазы). При наличии данной патологии в печени полностью отсутствует гликоген. Клинические проявления заболевания таковы: крайне низкое содержание глюкозы в крови, вследствие чего - постоянные гипогликемические судороги. Состояние больных определяется как крайне тяжелое. Наличие агликогеноза исследуют, осуществляя биопсию печени.

(6 оценок, среднее: 5,00 из 5)

Так получилось, что понятие гликоген обходилось стороной на этом блоге. Во многих статьях использовался этот термин, подразумевая грамотность и широту кругозора современного читателя. Чтобы расставить все точки над и, убрать возможные «непонятности» и окончательно разобраться с тем, что же такое гликоген в мышцах и написана эта статья. В ней не будет заумной теории, зато будет много такой информации, которую можно брать и применять.

О мышечном гликогене

Что такое гликоген?

Гликоген – это законсервированный углевод, энергетический загашник нашего тела, собран из молекул глюкозы, образуя цепочку. После приема пищи в организм поступает большое количество глюкозы. Излишек ее наше тело запасает для своих энергетических целей в виде гликогена.

Когда в организме наступает снижение уровня глюкозы в крови (вследствие выполнения физических упражнений, голода и т.д.), ферменты расщепляют гликоген до глюкозы, в результате ее уровень поддерживается на нормальном уровне и мозг, внутренние органы, а также мышцы (на тренировке) получают глюкозу для воспроизводства энергии.

В печени — высвобождать свободную глюкозу в кровь. В мышцах — давать энергию

Запасы гликогена находятся в основном в мышцах и печени. В мышцах его содержание 300-400 г, в печени еще 50 г, и еще 10 г путешествуют по нашей крови в виде свободной глюкозы.

Основная функция гликогена печени держать уровень сахара в крови на здоровом уровне. Депо печени обеспечивают также и нормальную работу мозга (общий тонус, в том числе). Гликоген в мышцах имеет важное значение в силовых видах спорта, т.к. умение понимать механизм его восстановления поможет Вам в Ваших спортивных целях.

Мышечный гликоген: его истощение и пополнение

Углубляться в биохимию процессов синтеза гликогена не вижу смысла. Вместо приведения здесь формул, наиболее ценной окажется информация, которую можно применить на практике.

Гликоген в мышце нужен для :

  • энергетических функций мышцы (сокращение, растяжение),
  • визуального эффекта наполненности мышц,
  • для включения процесса синтеза белка!!! (строительства новых мышц). Без энергии в мышечных клетках рост новых структур невозможен (т.е. нужны и белки, и углеводы). Вот почему так плохо работают низкоуглеводные диеты. Мало углеводов – мало гликогена – уходит много жира и много мышц.

В гликоген может пойти только углевод. Поэтому жизненно важно держать в своем рационе планку углеводов не ниже 50 % от общей калорийности. Употребляя нормальный уровень углеводов (около 60% от суточного рациона) Вы по максимуму сохраняете собственный гликоген и заставляете организм очень хорошо окислять углеводы.

Если гликогеновые депо заполнены – мышцы визуально больше (не плоские, а объемные, дутые), за счет присутствия в объеме саркоплазмы гранул гликогена. В свою очередь, каждый грамм глюкозы притягивает и удерживает в себе 3 грамма воды. В этом и состоит эффект наполненности – удержание в мышцах воды (это абсолютно нормально).

Для мужчины весом в 70 кг при объеме его гликогеновых депо в мышцах 300 г, запасы энергии составят 1200 ккал (1 г углевода дает 4 ккал) для будущих затрат. Сами понимаете, что сжечь весь гликоген будет крайне сложно. Тренировок такой интенсивности в мире фитнеса просто нет.

Полностью истощить запасы гликогена в культуристической тренировке не получится. Интенсивность занятий позволит сжечь 35-40 % гликогена мышц. Только в подвижных и высокоинтенсивных видах спорта происходит действительно глубокое истощение.

Пополнять запасы гликогена стоит не в течении 1 часа (белково-углеводное окно – миф, подробнее ) после тренировки, а в течении длительного времени, имеющегося у Вас в распоряжении. Ударные дозы углеводов имеют значение лишь в том, случае если Вам нужно восстановить мышечный гликоген уже к завтрашней тренировке (к примеру, после трех дней углеводной разгрузки или если у Вас ежедневные тренировки).

Пример читмила для экстренного восполнения гликогена

В этой ситуации стоит отдать предпочтение углеводам с высоким гликемическим индексом в большом количестве — 500-800 г. В зависимости от массы атлета (больше мышц, больше «углей») такая загрузка оптимально пополнит мышечные депо.

Во всех остальных случаях на пополнение запасов гликогена оказывает влияние суммарное количество съеденных за день углеводов (не важно дробно или за один прием).

Объем своих гликогеновых депо можно увеличивать. С ростом тренированности растет и объем саркоплазмы мышц, а значит и разместить в них гликогена можно больше. Кроме того, с фазами разгрузки и загрузки позволяет организму увеличивать запасы за счет сверхкомпенсации гликогена.

Компенсация мышечного гликогена

Итак, вот два главных фактора влияющих на восстановление гликогена:

  • Истощение гликогена на тренировке.
  • Рацион питания (ключевой момент — количество углеводов).

Полное восполнение гликогеновых депо происходит в промежутках времени не менее 12-48 часов, а это значит, что есть смысл тренировать каждую группу мышц по прошествии данного промежутка с целью истощать запасы гликогена, для увеличения и сверхкомпенсации мышечных депо.

Такие тренировки направлены на «закисление» мышц продуктами анаэробного гликолиза, подход в упражнении длится 20-30 секунд, с небольшим весом в районе 55-60 % от ПМ до «жжения». Это легкие пампинг тренировки на развитие энергетических резервов мышц (ну и отработки техники упражнений).

По питанию. Если у Вас грамотно подобрана суточная калорийность и соотношение белков, жиров и углеводов, то Ваши гликогеновые депо в мышцах и печени будут заполнены полностью. Что означает грамотно подобрать калорийность и макрос (соотношение Б/Ж/У):

  • Начните с белка. 1,5-2 г белка на 1 кг веса. Количество грамм белка умножаем на 4 и получаем суточную калорийность из белка.
  • Продолжите жиром. 15-20 % суточной калорийности получайте из жиров. 1 г жира дает 9 ккал.
  • Все остальное придется на углеводы. Ими регулируйте общую калорийность (дефицит калорий на сушке, профицит на массе).

В качестве примера абсолютно рабочая схема, как для набора массы, так и для похудения: 60 (у)/20 (б)/20 (ж). Опускать углеводы ниже 50 %, а жиры ниже 15 % не рекомендуется.

Гликогеновые депо – это не бездонная бочка. Принять они могут в себя ограниченное количество углеводов. Существует исследование Acheson et. al., 1982, в котором испытуемым предварительно истощили гликоген, а затем на протяжении 3 дней их кормили по 700-900 г углеводов. Через два дня у них начался процесс накопления жира. Вывод: такие огромные дозы углеводов 700 г и более на протяжении нескольких дней подряд приводят к преобразованию их в жиры. Обжорство ни к чему.

Заключение

Надеюсь, данная статья помогла Вам разобраться с понятием мышечного гликогена, а практические выкладки окажут реальную пользу в обретении красивого и сильного тела. Если у Вас остались вопросы задавайте их в комментариях ниже, не стесняясь!

Становитесь лучше и сильнее с

Читайте другие статьи в блога.

Гликоген представляет собой многоразветвленный полисахарид глюкозы, который служит в качестве формы хранения энергии у людей, животных, грибов и бактерий. Полисахаридная структура представляет собой основную форму хранения глюкозы в организме. У людей, гликоген производится и хранится, в основном, в клетках печени и мышцах, гидратированных тремя или четырьмя частями воды. Гликоген функционирует как вторичное долговременное хранилище энергии, причем первичные запасы энергии являются жирами, содержащимися в жировой ткани. Мышечный гликоген превращается в глюкозу мышечными клетками, а гликоген печени превращается в глюкозу для использования по всему телу, включая центральную нервную систему. Гликоген является аналогом крахмала, глюкозного полимера, который функционирует как хранилище энергии в растениях. Он имеет структуру, похожую на амилопектин (компонент крахмала), но более интенсивно разветвленную и компактную, чем крахмал. Оба являются белыми порошками в сухом состоянии. Гликоген встречается в виде гранул в цитозоле / цитоплазме во многих типах клеток и играет важную роль в цикле глюкозы. Гликоген образует запас энергии, который можно быстро мобилизовать для удовлетворения внезапной потребности в глюкозе, но менее компактен, чем энергетические запасы триглицеридов (липидов). В печени, гликоген может составлять от 5 до 6% от массы тела (100-120 г у взрослого человека). Только гликоген, хранящийся в печени, может быть доступен другим органам. В мышцах, гликоген находится в низкой концентрации (1-2% от массы мышц). Количество гликогена, хранящегося в организме, особенно в мышцах, печени и красных кровяных клетках , в основном, зависит от тренировок, базового метаболизма и привычек в еде. Небольшое количество гликогена находится в почках и даже меньшее количество – в некоторых глиальных клетках мозга и лейкоцитов. Матка также хранит гликоген во время беременности, чтобы питать эмбрион.

Структура

Гликоген представляет собой разветвленный биополимер, состоящий из линейных цепей глюкозных остатков с дальнейшими цепями, разветвляющимися каждые 8-12 глюкоз или около того. Глюкозы связаны линейно с помощью α (1 → 4) гликозидных связей от одной глюкозы к следующей. Ветви связаны с цепями, от которых они отделяются гликозидными связями α (1 → 6) между первой глюкозой новой ветви и глюкозой в цепочке стволовых клеток . Из-за того, как синтезируется гликоген, каждая гликогенная гранула имеет в своем составе гликогениновый белок. Гликоген в мышцах, печени и жировых клетках хранится в гидратированной форме, состоящей из трех или четырех частей воды на часть гликогена, связанной с 0,45 миллимолями калия на грамм гликогена.

Функции

Печень

Поскольку еда, содержащая углеводы или белок, съедается и переваривается, уровень глюкозы в крови повышается, а поджелудочная железа выделяет инсулин. Кровь глюкозы из воротной вены поступает в клетки печени (гепатоциты). Инсулин воздействует на гепатоциты, чтобы стимулировать действие нескольких ферментов, включая гликогенсинтазу. Молекулы глюкозы добавляются к цепям гликогена до тех пор, пока как инсулин, так и глюкоза остаются обильными. В этом постпрандиальном или «сытом» состоянии печень берет больше глюкозы из крови, чем высвобождает. После того, как еда была переварена и уровень глюкозы начинает падать, секреция инсулина снижается, и синтез гликогена прекращается. Когда это необходимо для энергии, гликоген разрушается и снова превращается в глюкозу. Гликогенфосфорилаза является основным ферментом распада гликогена. В течение следующих 8-12 часов, глюкоза, полученная из гликогена печени, является основным источником глюкозы в крови, используемой остальной частью организма для получения топлива. Глюкагон, еще один гормон, вырабатываемый поджелудочной железой, во многом служит противодействующим сигналом к инсулину. В ответ на уровень инсулина ниже нормы (когда уровень глюкозы в крови начинает падать ниже нормального диапазона), глюкагон секретируется в возрастающих количествах и стимулирует как гликогенолиз (распад гликогена), так и глюконеогенез (производство глюкозы из других источников).

Мышцы

Гликоген мышечной клетки, по-видимому, функционирует как непосредственный резервный источник доступной глюкозы для мышечных клеток. Другие ячейки, которые содержат небольшие количества, также используют его локально. Поскольку мышечным клеткам не хватает глюкозо-6-фосфатазы, которая требуется для приема глюкозы в кровь, гликоген, который они хранят, доступен исключительно для внутреннего использования и не распространяется на другие клетки. Это контрастирует с клетками печени, которые по требованию легко разрушают свой сохраненный гликоген в глюкозу и отправляют его через кровоток в качестве топлива для других органов.

История

Гликоген был обнаружен Клодом Бернардом. Его эксперименты показали, что в печени содержится вещество, которое может привести к восстановлению сахара под действием «фермента» в печени. К 1857 году он описал выделение вещества, которое он назвал «la matière glycogène», или «сахарообразующее вещество». Вскоре после открытия гликогена в печени, А. Сансон обнаружил, что мышечная ткань также содержит гликоген. Эмпирическая формула для гликогена (C6H10О5)n был установлен Кекуле в 1858 году.

Метаболизм

Синтез

Синтез гликогена, в отличие от его разрушения, является эндергоническим – он требует ввода энергии. Энергия для синтеза гликогена приходит из уридин трифосфата (УТФ), который реагирует с глюкозо-1-фосфатом, образуя УДФ-глюкозу, в реакции, катализируемой УТФ-глюкозо-1-фосфатной уридилтрансферазой. Гликоген синтезируется из мономеров УДФ-глюкозы изначально белком гликогенином, который имеет два тирозиновых анкера для восстанавливающего конца гликогена, поскольку гликогенин является гомодимером. После того, как к тирозиновому остатку добавляется около восьми молекул глюкозы, фермент гликогенсинтаза постепенно удлиняет гликогенную цепь с использованием УДФ-глюкозы, добавляя α (1 → 4) -связанную глюкозу. Фермент гликогена катализирует перенос концевого фрагмента из шести или семи остатков глюкозы из нередуцирующего конца в гидроксильную группу С-6 глюкозного остатка глубже во внутреннюю часть молекулы гликогена. Разветвляющийся фермент может действовать только на ветку, имеющую, по меньшей мере, 11 остатков, и фермент может переноситься в одну и ту же цепь глюкозы или соседние цепи глюкозы.

Гликогенолиз

Гликоген расщепляется от нередуцирующих концов цепи ферментом гликогенфосфорилазы с получением мономеров глюкозо-1-фосфата. In vivo, фосфорилиз протекает в направлении распада гликогена, поскольку соотношение фосфата и глюкозо-1-фосфата обычно больше 100. Затем глюкозо-1-фосфат превращается в 6-фосфат глюкозы (G6P) фосфоглюкомтазой. Для удаления α (1-6) ветвей в разветвленном гликоге необходим специальный ферментационный фермент, преобразующий цепочку в линейный полимер. Полученные мономеры G6P имеют три возможных судьбы: G6P может продолжаться по пути гликолиза и использоваться в качестве топлива. G6P может проникать через пентозофосфатный путь через фермент глюкозо-6-фосфатдегидрогеназу для получения НАДФН и 5-углеродных сахаров. В печени и почках, G6P можно дефосфорилировать обратно в глюкозу ферментом глюкозо-6-фосфатазой. Это последний шаг в пути глюконеогенеза.

Клиническая значимость

Нарушения метаболизма гликогена

Наиболее распространенным заболеванием, при котором метаболизм гликогена становится ненормальным, является , при котором из-за аномальных количеств гликоген печени может аномально накапливаться или истощаться. Восстановление нормального метаболизма глюкозы обычно нормализует метаболизм гликогена. При гипогликемии, вызванной чрезмерным уровнем инсулина, количества гликогена в печени высоки, но высокие уровни инсулина предотвращают гликогенолиз, необходимый для поддержания нормального уровня сахара в крови. Глюкагон является распространенным методом лечения этого типа гипогликемии. Различные врожденные ошибки метаболизма вызваны недостатками ферментов, необходимых для синтеза или расщепления гликогена. Они также называются заболеваниями, связанными с хранением гликогена.

Эффект истощения гликогена и выносливость

Спортсмены, бегающие на длинные дистанции, такие как марафонские бегуны, лыжники и велосипедисты, часто испытывают истощение гликогена, когда почти все запасы гликогена в организме спортсмена истощаются после длительных нагрузок без достаточного потребления углеводов. Истощение гликогена может быть предотвращено тремя возможными способами. Во-первых, во время упражнения углеводы с максимально возможной скоростью преобразования в глюкозу крови (высокий гликемический индекс) поступают непрерывно. Наилучший результат этой стратегии заменяет около 35% глюкозы, потребляемой при сердечных ритмах, выше примерно 80% от максимума. Во-вторых, благодаря адаптационным тренировкам на выносливость и специализированным схемам (например, тренировки с низкой степенью выносливости плюс диета), организм может определять мышечные волокна типа I для улучшения эффективности использования топлива и рабочей нагрузки для увеличения процента жирных кислот, используемых в качестве топлива, чтобы сберечь углеводы. В-третьих, при потреблении больших количеств углеводов после истощения запасов гликогена в результате физических упражнений или диеты, организм может увеличить емкость хранилищ внутримышечных гликогенов. Этот процесс известен как «углеводная нагрузка». В общем, гликемический индекс источника углеводов не имеет значения, поскольку чувствительность мышечного инсулина в результате временного истощения гликогена увеличивается.

    Гликоген — полисахарид на основе глюкозы, выполняющий в организме функцию энергетического резерва. Формально соединение относится к сложным углеводам, встречается только в живых организмах и предназначено для восполнения затрат энергии при физических нагрузках.

    Из статьи вы узнаете о функциях гликогена, особенностях его синтеза, роли, которую играет это вещество в спорте и диетическом питании.

    Что это такое?


    Говоря простым языком, гликоген (в особенности для спортсмена) – это альтернатива жирным кислотам, которая используется в качестве запасающего вещества. В чем суть? Все просто: мышечных клетках есть специальные энергетические структуры — «гликогеновые депо». В них хранится гликоген, который в случае необходимости быстро распадается на простейшую глюкозу и питает организм дополнительной энергией.

    Фактически, гликоген – это основные батарейки, которые используются исключительно для совершения движений в стрессовых условиях.

    Синтез и превращение


    Прежде чем рассматривать пользу гликогена как сложного углевода, разберемся, почему вообще в организме возникает такая альтернатива — гликоген в мышцах или жировые ткани. Для этого рассмотрим структуру вещества. Гликоген – это соединение из сотен молекул глюкозы. Фактически это чистый сахар, который нейтрализован и не попадает в кровь, пока организм сам его не запросит.

    Синтезируется гликоген в печени, которая перерабатывает поступающий сахар и жирные кислоты по своему усмотрению.

    Жирная кислота

    Что же такое жирная кислота, которая получается из углеводов? Фактически – это более сложная структура, в которой участвуют не только углеводы но и транспортирующие белки. Последние связывают и уплотняют глюкозу до более трудно расщепляемого состояния. Это позволяет в свою очередь увеличить энергетическую ценность жиров (с 300 до 700 ккал) и уменьшить вероятность случайного распада.

    Все это делается исключительно для создания резерва энергии в случае серьезного . Гликоген же накапливается в клетках, и распадается на глюкозу при малейшем стрессе. Но и синтез его значительно проще.

    Содержание гликогена в организме человека

    Сколько гликогена может содержать организм? Здесь все зависит от тренировки собственных энергетических систем. Изначально размер гликогенового депо нетренированного человека минимален, что обусловлено его двигательными потребностями.

    В дальнейшем, через 3-4 месяца интенсивных высокообъемных тренировок, гликогеновое депо под воздействием , насыщения крови и принципа супервосстановления постепенно увеличивается.

    При интенсивном и продолжительном тренинге запасы гликогена увеличиваются в организме в несколько раз.

    Что в свою очередь приводит к таким результатам:

    • возрастает выносливость;
    • объём мышечной ткани ;
    • наблюдаются значительные колебания в весе во время тренировочного процесса

    Гликоген не влияет напрямую на силовые показатели спортсмена. Кроме того, чтобы увеличивать размер гликогенового депо, нужны специальные тренировки. Так, например, пауэрлифтеры лишены серьезных запасов гликогена в виду и особенностей тренировочного процесса.

    Функции гликогена в организме человека


    Обмен гликогена происходит в печени. Её основная функция — не превращение сахара в полезные , а фильтрация и защита организма. Фактически, печень негативно реагирует на повышение сахара в крови, появление насыщенных жирных кислот и физические нагрузки.

    Все это физически разрушает клетки печени, которые, к счастью, регенерируют. Чрезмерное потребление сладкого (и жирного), в совокупности с интенсивными физическими нагрузками чревато не только дисфункцией поджелудочной железы и проблемами с печенью, но и серьёзными со стороны печени.

    Организм всегда пытается адаптироваться к изменяющимся условиям с минимальной энергопотерей. Если создать ситуацию, при которой печень (способная переработать не более 100 грамм глюкозы за раз), будет хронически испытывать переизбыток сахара, то новые восстановленные клетки будут превращать сахар напрямую в жирные кислоты, минуя стадию гликогена.

    Этот процесс называется «жировое перерождение печени». При полном жировом перерождении наступает гепатит. Но частичное перерождение считается нормой для многих тяжелоатлетов: такое изменение роли печени в синтезе гликогена приводит к замедлению обмена веществ и появлению избыточной жировой прослойки.


    Гликоген в организме выполняет задачу главного энергоносителя. Он накапливается в печени и мышцах, откуда напрямую попадает в кровеносную систему, обеспечивая нас необходимой энергией.

    Рассмотрим, как напрямую влияет гликоген на работу спортсмена:

  1. Гликоген быстро истощается благодаря нагрузкам. Фактически за одну интенсивную тренировку можно растратить до 80% всего гликогена.
  2. Это в свою очередь вызывает , когда организм требует быстрых углеводов, для восстановления.
  3. Под воздействием наполнения мышц кровью, гликогеновое депо растягивается, увеличивается размер клеток, которые могут хранить его.
  4. Гликоген поступает в кровь только до тех пор, пока пульс не пересечет отметку в 80% от максимального ЧСС. В случае превышения этого порога, недостаток кислорода приводит к стремительному окислению жирных кислот. На этом принципе основана «сушка организма».
  5. Гликоген не влияет на силовые показатели – только на выносливость.

Интересный факт: в углеводное окно можно безболезненно употреблять любое количество сладкого и вредного, так как организм в первую очередь восстанавливает гликогеновое депо.

Взаимосвязь гликогена и спортивных результатов предельно проста. Чем больше повторений – больше истощения, больше гликогена в дальнейшем, а значит, больше повторений в итоге.

Гликоген и похудение

Увы, но накопление гликогена не способствует похудению. Тем не менее, не стоит бросать тренировки и переходить на диеты. Рассмотрим ситуацию подробнее. Регулярные тренировки приводят к увеличению гликогенового депо. Суммарно за год оно способно увеличится на 300-600%, что выражается в 7-12% повышения общего веса. Да, это те самые килограммы от которых стремятся бежать многие женщины. Но с другой стороны, эти килограммы оседают не на боках, а остаются в мышечных тканях, что приводит к увеличению самих мышц. Например, ягодичных.

В свою очередь, наличие и опустошение гликогенового депо позволяет спортсмену корректировать свой вес в короткие сроки. Например, если нужно похудеть на дополнительные 5-7 килограмм за несколько дней, истощение гликогенового депо серьезными аэробными нагрузками поможет быстро войти в весовую категорию.

Другая важная особенность расщепления и накопления гликогена — перераспределение функций печени. В частности, при увеличенном размере депо избыток калорий связывается в углеводные цепочки без превращения их в жирные кислоты. А что это значит? Все просто – тренированный спортсмен меньше склонен к набору жировой ткани. Так, даже у маститых бодибилдеров, вес которых в межсезонье касается отметок в 140-150 кг, процент жировой прослойки редко достигает 25-27%.

Факторы влияющие на уровень гликогена

Важно понимать, что не только тренировки влияют на количество гликогена в печени. Этому способствует и основная регуляция гормонов инсулина и глюкагона, которая происходит благодаря потреблению определенного типа пищи. Так, при общем насыщении организма скорее всего превратятся в жировую ткань, а полностью превратятся в энергию, минуя гликогеновые цепочки. Так как же правильно определить, как распределится съеденная пища?

Для этого необходимо учитывать следующие факторы:

  1. . Высокие показатели способствуют росту сахара в крови, который нужно в срочном порядке законсервировать в жиры. Низкие показатели,стимулируют постепенное повышение глюкозы в крови, что способствует полному её расщеплению. И только средние показатели (от 30 до 60) способствуют превращению сахара в гликоген.
  2. . Зависимость обратно пропорциональная. Чем ниже нагрузка, тем больше шансов превращения углеводов в гликоген.
  3. Тип самого углевода. Всё зависит от того, насколько просто углеводное соединение расщепляется на простые моносахариды. Так, например мальтодекстрин с большей вероятностью превратится в гликоген, хотя имеет высокий гликемический индекс. Этот полисахарид попадает напрямую в печень, минуя пищеварительный процесс, и в этом случае его проще расщепить на гликоген, чем превратить в глюкозу и снова пересобрать молекулу.
  4. Количество углеводов. Если правильно дозировать количество углеводов в один прием пищи, то даже питаясь шоколадками и кексами вам удастся избежать жирового отложения.

Таблица вероятности превращения углеводов в гликоген

Итак, углеводы неравноценны по своей способности превращения в гликоген или в жирные полинасыщенные кислоты. Во что превратится поступающая глюкоза, зависит только от того, в каком количестве она выделится при расщеплении продукта. Так, например, очень с большой вероятностью вообще не превратятся ни в жирные кислоты, ни в гликоген. В то же время чистый сахар уйдет в жировую прослойку практически целиком.

Примечание редакции: приведённый ниже список продуктов нельзя рассматривать как истину в последней инстанции. Метаболические процессы зависят от индивидуальных особенностей конкретно взятого человека. Мы указываем лишь процентную вероятность, что этот продукт будет более полезным или более вредным для вас.

Наименование Гликемический индекс Процент вероятности полного сжигания Процент вероятности превращения в жир Процент вероятности превращения в гликоген
Финики сушёные 204 3.7% 62.4% <10%
202 2.5% 58.5% <10%
Семечки подсолнуха сухие 8 85% 28.8% 7%
Арахис 20 65% 8.8% 7%
Брокколи 20 65% 2.2% 7%
Грибы 20 65% 2.2% 7%
Салат листовой 20 65% 2.4% 7%
Салат-латук 20 65% 0.8% 7%
Помидоры 20 65% 4.8% 7%
Баклажаны 20 65% 5.2% 7%
Зеленый перец 20 65% 5.4% 7%
Капуста белокочанная 20 65% 4.6% 7%
20 65% 5.2% 7%
Лук репчатый 20 65% 8.2% 7%
Абрикосы свежие 20 65% 8.0% 7%
Фруктоза 20 65% 88.8% 7%
Сливы 22 65% 8.5% 7%
22 65% 24% 7%
22 65% 5.5% 7%
Вишня 22 65% 22.4% 7%
Шоколад черный (60% какао) 22 65% 52.5% 7%
Орехи грецкие 25 37% 28.4% 27%
Молоко снятое 26 37% 4.6% 27%
Сосиски 28 37% 0.8% 27%
Виноград 40 37% 25.0% 27%
Горошек зеленый свежий 40 37% 22.8% 27%
Сок апельсиновый свежеотжатый без сахара 40 37% 28% 27%
Молоко 2.5 % 40 37% 4.64% 27%
Яблоки 40 37% 8.0% 27%
Сок яблочный без сахара 40 37% 8.2% 27%
Мамалыга (каша из кукурузной муки) 40 37% 22.2% 27%
Фасоль белая 40 37% 22.5% 27%
Хлеб зерновой пшеничный, хлеб ржаной 40 37% 44.8% 27%
Персики 40 37% 8.5% 27%
Мармелад ягодный без сахара, джем без сахара 40 37% 65% 27%
Молоко соевое 40 37% 2.6% 27%
Молоко цельное 42 37% 4.6% 27%
Клубника 42 37% 5.4% 27%
Фасоль цветная отварная 42 37% 22.5% 27%
Груши консервированные 44 37% 28.2% 27%
44 37% 8.5% 27%
Зерна ржаные. пророщенные 44 37% 56.2% 27%
Йогурт натуральный 4.2% жирности 45 37% 4.5% 27%
Йогурт обезжиренный 45 37% 4.5% 27%
Хлеб с отрубями 45 37% 22.4% 27%
Сок ананасовый. без сахара 45 37% 25.6% 27%
Курага 45 37% 55% 27%
Морковь сырая 45 37% 6.2% 27%
Апельсины 45 37% 8.2% 27%
Инжир 45 37% 22.2% 27%
Овсяная каша молочная 48 37% 24.2% 27%
Горошек зеленый. консервированный 48 31% 5.5% 42%
Сок виноградный без сахара 48 31% 24.8% 42%
Спагетти из муки грубого помола 48 31% 58.4% 42%
Сок грейпфрута без сахара 48 31% 8.0% 42%
Щербет 50 31% 84% 42%
50 31% 4.0% 42%
, блины из гречневой муки 50 31% 44.2% 42%
Картофель сладкий (батат) 50 31% 24.5% 42%
Тортеллини с сыром 50 31% 24.8% 42%
50 31% 40.5% 42%
Спагетти. макароны 50 31% 58.4% 42%
Рис белый рассыпчатый 50 31% 24.8% 42%
Пицца с помидорами и сыром 50 31% 28.4% 42%
Булочки для гамбургеров 52 31% 54.6% 42%
Твикс 52 31% 54% 42%
Йогурт сладкий 52 31% 8.5% 42%
Мороженое пломбир 52 31% 20.8% 42%
Оладьи из пшеничной муки 52 31% 40% 42%
Отруби 52 31% 24.5% 42%
Бисквит 54 31% 54.2% 42%
Изюм 54 31% 55% 42%
Печенье песочное 54 31% 65.8% 42%
54 31% 8.8% 42%
Макароны с сыром 54 31% 24.8% 42%
Зерна пшеничные. пророщенные 54 31% 28.2% 42%
Пиво 2.8% алкоголя 220 20% 4.4% <10%
Манная крупа 55 12% 56.6% <10%
Овсяная каша, быстрорастворимая 55 12% 55% <10%
Печенье сдобное 55 12% 65. 8% <10%
Сок апельсиновый (готовый) 55 12% 22.8% <10%
Салат фруктовый со взбитыми с сахаром 55 12% 55.2% <10%
Кускус 55 12% 64% <10%
Печенье овсяное 55 12% 62% <10%
Манго 55 12% 22.5% <10%
Ананас 55 12% 22.5% <10%
Хлеб черный 55 12% 40.6% <10%
бананы 55 12% 22% <10%
Дыня 55 12% 8.2% <10%
Картофель. вареный «в мундире» 55 12% 40.4% <10%
Рис дикий отварной 56 12% 22.44% <10%
Круассан 56 12% 40.6% <10%
Мука пшеничная 58 12% 58.8% <10%
Папайя 58 12% 8.2% <10%
Кукуруза консервированная 58 12% 22.2% <10%
Мармелад, джем с сахаром 60 12% 60% <10%
Шоколад молочный 60 12% 52.5% <10%
Крахмал картофельный, кукурузный 60 12% 68.2% <10%
Рис белый, обработанный паром 60 12% 68.4% <10%
Сахар (сахароза) 60 12% 88.8% <10%
Пельмени, равиоли 60 12% 22% <10%
Кока-кола, фанта, спрайт 60 12% 42% <10%
Марс, сникерс (батончики) 60 12% 28% <10%
Картофель вареный 60 12% 25.6% <10%
Кукуруза вареная 60 12% 22.2% <10%
Бублик пшеничный 62 12% 58.5% <10%
Пшено 62 12% 55.5% <10%
Сухари молотые для панировки 64 12% 62.5% <10%
Вафли несладкие 65 12% 80.2% <10%
65 12% 4.4% <10%
Арбуз 65 12% 8.8% <10%
Пончики 65 12% 48.8% <10%
Кабачки 65 12% 4.8% <10%
Мюсли с орехами и изюмом 80 12% 55.4% <10%
Картофельные чипсы 80 12% 48.5% <10%
Крекеры 80 12% 55.2% <10%
Рисовая каша быстрого приготовления 80 12% 65.2% <10%
Мед 80 12% 80.4% <10%
Картофельное пюре 80 12% 24.4% <10%
Джем 82 12% 58% <10%
Абрикосы консервированные 82 12% 22% <10%
Картофельное пюре быстрого приготовления 84 12% 45% <10%
Картофель печеный 85 12% 22.5% <10%
Хлеб белый 85 12% 48.5% <10%
Поп корн 85 12% 62% <10%
85 12% 68.5% <10%
Булочки французские 85 12% 54% <10%
Рисовая мука 85 12% 82.5% <10%
Морковь отварная 85 12% 28% <10%
тост из белого хлеба 200 7% 55% <10%

Итог

Гликоген в мышцах и печени особенно важен для атлетов, практикующих . Механизмы накопления гликогена предполагают стабильное увеличение базового веса. Тренировка энергетических систем поможет не только достичь высоких спортивных результатов, но и увеличит общий запас дневной энергии. Вы будете меньше уставать и лучше себя чувствовать.

Для спортсмена наращивание гликогеновых запасов — не только необходимость, но и профилактика ожирения. Сложные углеводы могут храниться в мышцах сколь угодно долго, не окисляясь и не распадаясь. При этом любая нагрузка приводит к их растрате и регуляции общего состояния организма.

И напоследок один интересный факт: именно распад гликогена ведет к тому, что большая часть глюкозы попадает через кровь напрямую в ЦНС, стимулируя и улучшая мозговую деятельность.

Гликоген является сложным, комплексным углеводом, который в процессе гликогенеза образуется из глюкозы, поступающей в организм человека вместе с пищей. С химической точки зрения он определяется формулой C6H10O5 и представляет собой коллоидальный полисахарид, имеющий сильно разветвленную цепь из остатков глюкозы. В этой статье мы расскажем все про гликогены: что это такое, каковы их функции, где они запасаются. Также мы опишем, какие бывают отклонения в процессе их синтезирования.

Гликоген является необходимым организму резервом глюкозы. В организме человека он синтезируется следующим образом. Во время приема пищи углеводы (в том числе крахмал и дисахариды - лактоза, мальтоза и сахароза) под действием фермента (амилазы) расщепляются на мелкие молекулы. Затем в тонком кишечнике такие ферменты, как сахараза, панкреатическая амилаза и мальтаза осуществляют гидролиз углеводных остатков до моносахаридов, в том числе и глюкозы.

Гликоген является необходимым организму резервом глюкозы. В организме человека он синтезируется следующим образом. Во время приема пищи углеводы (в том числе крахмал и дисахариды - лактоза, мальтоза и сахароза) под действием фермента (амилазы) расщепляются на мелкие молекулы. Затем в тонком кишечнике такие ферменты, как сахараза, панкреатическая амилаза и мальтаза осуществляют гидролиз углеводных остатков до моносахаридов, в том числе и глюкозы. Одна часть высвобожденной глюкозы, поступив в кровоток, направляется в печень, а другая транспортируется в клетки других органов. Непосредственно в клетках, в том числе и в мышечных, происходит последующий распад моносахарида глюкозы, который называется гликолиз. В процессе гликолиза, происходящего с участием или без участия (аэробный и анаэробный) кислорода синтезируются молекулы АТФ, которые являются источником энергии во всех живых организмах. Но не вся глюкоза, попадающая с пищей в организм человека, расходуется на синтез АТФ. Часть ее запасается в форме гликогена. Процесс гликогенеза предполагает полимеризацию, то есть последовательное присоединение друг к другу мономеров глюкозы и формирование полисахаридной разветвленной цепи под воздействием специальных ферментов.

Хранится полученный гликоген в виде особых гранул в цитоплазме (цитозоле) многих клеток организма. Особенно велико содержание гликогена в печени и мышечной ткани.
Причем мышечный гликоген - это источник запаса глюкозы для самой мышечной клетки (в случае сильной нагрузки), а печеночный поддерживает нормальную концентрацию глюкозы в крови. Также запас этих сложных углеводов имеется в нервных клетках, клетках сердца, аорты, эпителиальных покровов, соединительной ткани, слизистой оболочки матки и эмбриональных тканей. Итак, мы рассмотрели, что понимается под термином «гликогены». Что это такое, теперь понятно. Далее поговорим про их функции.


Причем мышечный гликоген - это источник запаса глюкозы для самой мышечной клетки (в случае сильной нагрузки), а печеночный поддерживает нормальную концентрацию глюкозы в крови. Также запас этих сложных углеводов имеется в нервных клетках, клетках сердца, аорты, эпителиальных покровов, соединительной ткани, слизистой оболочки матки и эмбриональных тканей. Итак, мы рассмотрели, что понимается под термином «гликогены». Что это такое, теперь понятно. Далее поговорим про их функции.


В организме гликоген служит в качестве энергетического резерва. В случае острой необходимости организм сможет получить из него недостающую глюкозу. Как это происходит? Распад гликогена осуществляется в периодах между приемами пищи, а также значительно ускоряется во время серьезной физической работы. Этот процесс происходит путем отщепления глюкозных остатков под воздействием особых ферментов. В итоге гликоген распадается до свободной глюкозы и глюкозо-6-фосфата без затрат АТФ.

Печень является одним важнейших внутренних органов человеческого тела. Она выполняет множество разнообразных жизненно необходимых функций. В том числе обеспечивает нормальный уровень сахара в крови, необходимый для функционирования головного мозга. Главными механизмами, при помощи которых осуществляется поддержание глюкозы в нормальном диапазоне - от 80 до 120 мг/дл, являются липогенез с последующим распадом гликогена, глюконеогенез и трансформация других сахаров в глюкозу. При понижении уровня сахара в крови происходит активизация фосфорилазы, и тогда гликоген печени расщепляется. Из цитоплазмы клеток исчезают его скопления, и глюкоза поступает в кровь, давая организму необходимую энергию. При повышении уровня сахара, к примеру после приема пищи, клетки печени начинают активно синтезировать гликоген и депонировать его. Глюконеогенез представляет собой процесс синтезирования печенью глюкозы из других веществ, в том числе и аминокислот. Регуляторная функция печени делает ее критически необходимым для нормальной жизнедеятельности органа. Отклонения - значительные повышения/понижения уровня глюкозы в крови - представляют для здоровья человека серьезную опасность.

Нарушения обмена гликогена представляют собой группу наследственных гликогеновых заболеваний. Их причинами являются различные дефекты ферментов, непосредственно участвующих в регуляции процессов образования или расщепления гликогенов. Среди гликогеновых заболеваний выделяют гликогенозы и агликогенозы. Первые представляют собой редкие наследственные патологии, обусловленные чрезмерным накоплением полисахарида C6H10O5 в клетках.
При понижении уровня сахара в крови происходит активизация фосфорилазы, и тогда гликоген печени расщепляется. Из цитоплазмы клеток исчезают его скопления, и глюкоза поступает в кровь, давая организму необходимую энергию. При повышении уровня сахара, к примеру после приема пищи, клетки печени начинают активно синтезировать гликоген и депонировать его. Глюконеогенез представляет собой процесс синтезирования печенью глюкозы из других веществ, в том числе и аминокислот. Регуляторная функция печени делает ее критически необходимым для нормальной жизнедеятельности органа. Отклонения - значительные повышения/понижения уровня глюкозы в крови - представляют для здоровья человека серьезную опасность.

Нарушения обмена гликогена представляют собой группу наследственных гликогеновых заболеваний. Их причинами являются различные дефекты ферментов, непосредственно участвующих в регуляции процессов образования или расщепления гликогенов. Среди гликогеновых заболеваний выделяют гликогенозы и агликогенозы. Первые представляют собой редкие наследственные патологии, обусловленные чрезмерным накоплением полисахарида C6H10O5 в клетках. Синтез гликогена и его последующее избыточное нахождение в печени, легких, почках, скелетных и сердечной мышцах вызываются дефектами ферментов (например, глюкоза-6-фосфатазы), участвующих в распаде гликогена. Чаще всего при гликогенозе наблюдаются нарушения развития органов, задержка психомоторного развития, тяжелые гипогликемические состояния, вплоть до наступления комы. Для подтверждения диагноза и определения типа гликогеноза проводят биопсию печени и мышц, после чего отправляют полученный материал на гистохимическое исследование. В ходе него устанавливают содержание гликогена в тканях, а также активность ферментов, способствующих его синтезу и распаду.

Агликогенозы представляют собой тяжелое наследственное заболевание, вызванное отсутствием фермента, способного осуществлять синтез гликогена (гликогенсинтетазы). При наличии данной патологии в печени полностью отсутствует гликоген. Клинические проявления заболевания таковы: крайне низкое содержание глюкозы в крови, вследствие чего - постоянные гипогликемические судороги. Состояние больных определяется как крайне тяжелое. Наличие агликогеноза исследуют, осуществляя биопсию печени.


Что это за зверь такой «гликоген»? Обычно о нем вскользь упоминается в связи с углеводами, однако мало кто решает углубиться в саму суть данного вещества. Кость Широкая решила рассказать вам все самое важное и нужное о гликогене, чтобы больше не верили в миф о том, что «сжигание жиров начинается только после 20 минуты бега». Заинтриговали? Читай!

Итак, из этой статьи вы узнаете: что такое гликоген, как образуется, где и для чего накапливается гликоген, как происходит обмен гликогена, а также, какие продукты являются источником гликогена.

Что такое гликоген?

Нашему телу еда в первую очередь нужна как источник энергии, а уже потом, как источник удовольствия, антистрессовый щит или возможность «побаловать» себя. Как известно, энергию мы получаем из макронутриентов: жиров , белков и углеводов . Жиры дают 9 ккал, а белки и углеводы - 4 ккал. Но не смотря на большую энергетическую ценность жиров и важную роль незаменимых аминокислот из белков важнейшими «поставщиками» энергии в наш организм являются углеводы.

Почему? Ответ прост: жиры и белки являются «медленной» формой энергии, т.к. на их ферментацию требуется определенное время, а углеводы - «быстрой» . Все углеводы (будь то конфета или хлеб с отрубями) в конце концов расщепляются до глюкозы , которая необходима для питания всех клеток организма.


Схема расщепления углеводов

Гликоген - это своеобразный «консервант» углеводы, другими словами, сохраненная про запас для последующих энергетических нужд глюкоза. Она хранится в связанном с водой состоянии. Т.е. гликоген - это «сироп» калорийностью 1-1.3 ккал/гр (при калорийности углеводов 4 ккал/г).

Дофаминовая зависимость: как снять тягу к сладкому. Компульсивное переедание

Процесс образования гликогена (гликогенез) проходит по 2м сценариям. Первый - это процесс запаса гликогена. После углеводосодержащей еды уровень глюкозы в крови повышается. В ответ инсулин попадает в кровоток, чтобы впоследствии облегчить доставку глюкозы в клетки и помочь синтезу гликогена. Благодаря ферменту (амилазе) происходит расщепление углеводов (крахмала, фруктозы, мальтозы, сахарозы) на более мелкие молекулы.Затем под воздействием ферментов тонкого кишечника осуществляется распад глюкозы на моносахариды. Значительная часть моносахаридов (самая простая форма сахара) поступает в печень и мышцы, где гликоген откладывается в «резерв» . Всего синтезируется 300-400 гр гликогена.

Второй механизм запускается в периоды голода или активной физической деятельности .По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности. Когда организм истощает запас гликогена в клетках, то мозг подает сигналы о необходимости «дозаправки».


Дорогой, я ускорила метаболизм или мифы о «раскрученном» метаболизме

Основные запасы гликогена находятся в печени и мышцах. Количество гликогена в печени может достигать у взрослого человека 150 - 200 гр. Клетки печени являются лидерами по накоплению гликогена: они могут на 8 процентов состоять из этого вещества.

Основная функция гликогена печени - поддержать уровень сахара в крови на постоянном, здоровом уровне . Печень сама себе является одним из важнейших органов организма (если вообще стоит проводить «хит парад» среди органов, которые нам все необходимы), а хранение и использование гликогена делает ее функции еще ответственнее: качественное функционирование головного мозга возможно только благодаря нормальному уровню сахара в организме.


Если же уровень сахара в крови снижается, то возникает дефицит энергии, из-за которого в организме начинается сбой. Нехватка питания для мозга сказывается на центральной нервной системе, которая истощается. Тут то и происходит расщепление гликогена. Потом глюкоза поступает в кровь, благодаря чему организм получает необходимое количество энергии.

Гликоген в мышцах.

Гликоген откладывается также в мышцах. Общее количество гликогена в организме составляет 300 - 400 граммов. Как мы знаем, около 100-120 граммов вещества накапливается в печени, а вот остальная часть (200-280 гр ) сохраняется в мышцах и составляет максимум 1 - 2% от общей массы этих тканей. Хотя если говорить максимально точно, то следует отметить, что гликоген хранится не в мышечных волокнах, а в саркоплазме - питательной жидкости, окружающей мышцы.

Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания, а снижается только во время физической нагрузки – длительной и/или напряженной. При работе мышц под влиянием специального фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, который используется для обеспечения глюкозой работы самих мышц (мышечных сокращений). Таким образом, мышцы используют гликоген только для собственных нужд.

Интенсивная мышечная деятельность замедляет всасывание углеводов, а легкая и непродолжительная работа усиливает всасывание глюкозы.

Гликоген печени и мышц используется для разных нужд, однако говорить о том, что какой-то из них важнее - абсолютнейший вздор и демонстрирует только вашу дикую неграмотность.


Все, что написано на данном скрине, полная ересь. Если вы боитесь фруктов и думаете, что они прямиком запасаются в жир, то никому не говорите этой чуши и срочно читайте статью Фруктоза: можно ли есть фрукты и худеть?

Для любых активных физических нагрузок (силовые упражнения в тренажерном зале, бокс, бег, аэробика, плавание и все, что заставляет вас потеть и напрягаться) организму нужно 100-150 граммов гликогена в каждый час активности . Потратив запасы гликогена, тело начинает разрушать сперва мышцы, затем жировую ткань.

Обратите внимание: если речь идет не о длительном полном голодании, запасы гликогена не истощаются полностью, потому что имеют жизненно важное значение. Без запасов в печени мозг может остаться без снабжения глюкозой, а это смертельно опасно, ведь мозг самый главный орган (а не попа, как некоторые думают). Без запасов в мышцах сложно совершить интенсивную физическую работу, что в природе воспринимается как повышенный шанс быть сожранным/без потомства/замерзшим и т.д.

Тренировки истощают запасы гликогена, но не по схеме «первые 20 минут работаем на гликогене, потом переходим на жиры и худеем». Для примера возьмем исследование, в котором тренированные атлеты выполняли 20 сетов упражнений на ноги (4 упражнения, 5 сетов каждого; каждый сет выполнялся до отказа и составлял 6-12 повторений; отдых был коротким; общее время тренировки составило 30 минут). Кто знаком с силовыми тренировками, понимает, что было отнюдь не легко. До и после упражнения у них брали биопсию и смотрели содержание гликогена. Оказалось, что количество гликогена снизилось с 160 до 118 ммоль/кг, т. е. менее, чем на 30% .


Вот так походя мы развеяли еще один миф - вряд ли за тренировку вы успеете исчерпать все запасы гликогена, так что не стоит набрасываться на еду прямо в раздевалке среди потных кроссовок и посторонних тел, вы явно не помрете от «неминуемого» катаболизма. Кстати, пополнять запасы гликогена стоит не в течении 30 минут после тренировки (увы, белково-углеводное окно – миф ), а в течении 24 часов.

Люди крайне преувеливают скорость истощения гликогена (как и многие другие вещи) ! Любят сразу на тренировке закинуться «углями» после первого разминочного подхода с грифом пустым, а то ж «истощение мышечного гликогена и КАТАБОЛИЗМ». Прилег на час днем и усе, печеночного гликогена как не бывало. Я уж молчу про катастрофические энергозатраты от 20минутного черепашьего бега. Да и вообще, мышцы жрут чуть не 40 ккал на 1 кг, белок гниет, образует слизь в жкт и провоцирует рак, молочка заливает так, что аж 5 лишних кило на весах (не жира, ага), жиры вызывают ожирение, углеводы смертельно опасны (боюсь-боюсь) и от глютена вы точно помрете. Странно только, что мы вообще ухитрились выжить в доисторические времена и не вымерли, хотя питались явно не амброзией и спортпитом.
Помните, пожалуйста, что природа умнее нас и давно все при помощи эволюции отрегулировала. Человек один из самых адаптированных и приспосабливаемых организмов, который способен существовать, размножаться, выживать. Так что без психозов, господа и дамы.

Однако тренироваться на пустой желудок более чем бессмысленно.»Что же делать?» подумаете вы. Ответ вы узнаете в статье «Кардио: когда и зачем?» , которая расскажет вам о последствиях голодных тренировок.

Хочешь похудеть - не ешь углеводы

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 48-60 часов полного голодания запасы гликогена в печени полностью истощаются.

Гликоген мышц расходует во время физической активности. И тут мы опять обсудим миф: «Чтобы сжечь жир, нужно бегать не менее 30 минут, поскольку только на 20-й минуте в организме истощаются запасы гликогена и в качестве топлива начинает использоваться подкожный жир», только с чисто математической стороны. Откуда это пошло? А пес его знает!


Действительно, организму проще использовать гликоген, чем окислять жир для энергии, поэтому в первую очередь расходуется он. Отсюда и миф: надо сначала израсходовать ВЕСЬ гликоген, и потом жир начнет гореть, а произойдет это примерно через 20 минут после начала аэробной тренировки. Почему 20? Понятия не имеем.

НО : никто не учитывает, что использовать весь гликоген не так-то просто и 20-ю минутами тут дело не ограничится. Как мы знаем, общее количество гликогена в организме составляет 300 - 400 граммов, а в некоторых источниках говорится о 500 граммах, что дает нам от 1200 до 2000 ккал ! Вы вообще представляете, сколько нужно бегать, чтобы истощить такую прорву калорий? Человек весом в 60 кг должен будет пробежать в среднем темпе от 22 до З5 километров. Ну как, готовы?


Истощила гликоген 🙂

Успешная тренировка требует двух главных условий - наличия запасов гликогена в мышцах до силовой тренировки и достаточный уровень восстановления этих запасов после нее. Силовая тренировка без гликогена будет буквально сжигать мышцы. Для того, чтобы этого не произошло, углеводов в вашем рационе должно быть столько, чтобы организм мог обеспечить энергией все процессы, проходящие в нем. Без гликогена (и кислорода, кстати) у нас не сможет вырабатываться АТФ, который выполняет роль энергетического склада или запасного резервуара. Сами молекулы АТФ не хранят энергию, сразу же после своего создания они высвобождают энергию.

Непосредственным источником энергии для мышечных волокон ВСЕГДА является аденозинтрифосфат (АТФ), но его настолько мало в мышцах, что хватает всего лишь на 1-3 секунды интенсивной работы! Поэтому, все преобразования жиров, углеводов и других энергоносителей в клетке сводятся к постоянному синтезу АТФ. Т.е. все эти вещества «горят» для создания молекул АТФ. АТФ нужна организму всегда, даже когда человек не занимается спортом, а просто ковыряет в носу. От нее зависит работа всех внутренних органов, зарождение новых клеток, их рост, сократительная функция тканей и многое другое. АТФ может сильно снизиться, если, например, заниматься интенсивными упражнениями. Вот почему нужно знать, как восстановить АТФ, и вернуть организму энергию, служащую топливом не только для мышц скелета, но и для внутренних органов.

Кроме того, гликоген играет важную роль в восстановлении организма после тренировок , без которого рост мышц невозможен.

Разумеется, чтобы сокращаться и расти (для включения синтеза белков), мышцам нужна энергия. Не будет в клетках мышц энергии = не будет роста . Поэтому безуглеводки или диеты с минимальным кол-вом углеводов работают плохо: мало углеводов, мало гликогена, соответственно вы будете активно жечь мышцы.

Так что никаких белковых детоксов и боязни фруктов с кашами: выбросьте книгу о палео диете в топку! Выбирайте сбалансированный, здоровый, разнообразный рацион (описан тут ) и не демонизируйте отдельные продукты.

Любите «почистить» организм? Тогда статья «Детокс лихорадка» точно повергнет вас в шок!

В гликоген может пойти только углевод. Поэтому крайне важно держать в своем рационе планку углеводов не ниже 50 % от общей калорийности. Употребляя нормальный уровень углеводов (около 60% от суточного рациона) вы по максимуму сохраняете собственный гликоген и заставляете организм очень хорошо окислять углеводы.

Важно иметь в рационе хлебобулочные изделия, каши, злаки, разные фрукты и овощи.

Лучшими источниками гликогена являются: сахар, мед, шоколад , мармелад, варенье, финики, изюм, инжир, бананы , арбуз, хурма, сладкая выпечка.

Осторожно к подобной пище стоит отнестись лицам с дисфункцией печени и недостатком ферментов.


Гликоген – это запасной углевод животных, состоящий из большого количества остатков глюкозы. Запас гликогена позволяет быстро восполнять недостаток содержания в крови глюкозы, как только её уровень понижается, происходит расщепление гликогена, и в кровь поступает свободная глюкоза. В организме человека глюкоза в основном хранится в виде гликогена. Запасать отдельные молекулы глюкозы клеткам не выгодно, так как это значительно повышало бы осмотическое давление внутри клетки. По своей структуре гликоген напоминает крахмал, то есть полисахарид, который в основном запасают растения. Крахмал тоже состоит из остатков глюкозы, соединённых между собой, однако в молекулах гликогена гораздо больше разветвлений. Качественная реакция на гликоген – реакция с йодом – даёт бурое окрашивание, в отличие от реакции йода с крахмалом, которая позволяет получить фиолетовое окрашивание.

Образование и расщепление гликогена регулируют несколько гормонов, а именно:

1) инсулин
2) глюкагон
3) адреналин

Образование гликогена происходит после того, как концентрация глюкозы в крови повышается: раз глюкозы много, то её необходимо запасти впрок. Поглощение глюкозы клетками в основном регулируется двумя гормонами-антагонистами, то есть гормонами с противоположным действием: инсулином и глюкагоном. Оба гормона выделяются клетками поджелудочной железы.

Обратите внимание: слова «глюкагон» и «гликоген» очень похожи, но глюкагон – это гормон, а гликоген – запасной полисахарид.

Инсулин синтезируется, если глюкозы в крови много. Это обычно бывает после того, как человек поел, в особенности если еда - это богатая углеводами пища (например, если съесть мучное или сладкое). Все углеводы, которые содержатся в пище, расщепляются до моносахаридов, и уже в таком виде через стенку кишечника всасываются в кровь. Соответственно, уровень глюкозы повышается.

Когда рецепторы клеток реагируют на инсулин, клетки поглощают глюкозу из крови, и её уровень вновь снижается. Кстати, именно поэтому диабет – недостаток инсулина – образно называют «голод среди изобилия», ведь в крови после употребления пищи, которая богата углеводами, появляется очень много сахара, но без инсулина клетки не могут его поглотить. Часть глюкозы клетки используют для получения энергии, а оставшуюся превращают в жир. Клетки печени используют поглощённую глюкозу для синтеза гликогена. Если же в крови мало глюкозы, то происходит обратный процесс: поджелудочная железа выделяет гормон глюкагон, и клетки печени начинают расщеплять гликоген, выделяя глюкозу в кровь, или синтезировать глюкозу заново из более простых молекул, таких как молочная кислота.

Адреналин также приводит к распаду гликогена, потому что всё действие этого гормона направлено на то, чтобы мобилизовать организм, подготовить его к реакции по типу «бей или беги». А для этого необходимо, чтобы концентрация глюкозы стала выше. Тогда мышцы смогут использовать её для получения энергии.

Таким образом, поглощение пищи приводит к выделению в кровь гормона инсулина и синтезу гликогена, а голодание – к выделению гормона глюкагона и распаду гликогена. Выделение адреналина, происходящее в стрессовых ситуациях, также приводит к распаду гликогена.

Субстратом для синтеза гликогена, или гликогеногенеза, как его по-другому называют, служит глюкозо-6-фосфат. Это молекула, которая получается из глюкозы после присоединения к шестому атому углерода остатка фосфорной кислоты. Глюкоза, образующая глюкозо-6-фосфат, попадает в печень из крови, а в кровь – из кишечника.

Возможен и другой вариант: глюкоза может быть заново синтезирована из более простых предшественников (молочной кислоты). В таком случае из крови глюкоза попадает, например, в мышцы, где расщепляется до молочной кислоты с выделением энергии, а потом накопленная молочная кислота транспортируется в печень, и клетки печени заново синтезируют из неё глюкозу. Потом эту глюкозу можно превратить в глюкозо-6-фосфот и далее на его основе синтезировать гликоген.

Итак, что же происходит в процессе синтеза гликогена из глюкозы?

1. Глюкоза после присоединения остатка фосфорной кислоты становится глюкозо-6-фосфатом. Это происходит благодаря ферменту гексокиназе. Этот фермент имеет несколько разных форм. Гексокиназа в мышцах немного отличается от гексокиназы в печени. Та форма этого фермента, которая присутствует в печени, хуже связывается с глюкозой, а продукт, образующийся в ходе реакции, не ингибирует протекание реакции. Благодаря этому клетки печени способны поглощать глюкозу только тогда, когда её много, и могу сразу превратить в глюкозо-6-фосфат очень много субстрата, даже если не успевают его переработать.

2. Фермент фосфоглюкомутаза катализирует превращение глюкозо-6-фосфата в его изомер - глюкозо-1-фосфат.

3. Полученный глюкозо-1-фосфат потом соединяется с уридинтрифосфатом, образуя УДФ-глюкозу. Катализирует этот процесс фермент УДФ-глюкозопирофосфорилаза. Эта реакция не может протекать в обратную сторону, то есть является необратимой в тех условиях, которые присутствуют в клетке.

4. Фермент гликогенсинтаза переносит остаток глюкозы на формирующуюся молекулу гликогена.

5. Гликогенразветвляющий фермент добавляет точки ветвления, создавая новые «веточки» на молекуле гликогена. Позже на конец этого ответвления добавляются новые остатки глюкозы с помощью гликогенсинтазы.

Гликоген – это необходимый для жизни запасной полисахарид, и хранится он в виде небольших гранул, находящихся в цитоплазме некоторых клеток.

Гликоген запасают следующие органы:

1. Печень. В печени гликогена довольно много, и это единственный орган, который использует запас гликогена для регуляции концентрации сахара в крови. До 5-6 % может составлять гликоген от массы печени, что примерно соответствует 100-120 граммам.

2. Мышцы. В мышцах запас гликогена меньше в процентном соотношении (до 1 %), однако суммарно по весу может превосходить весь гликоген, запасённый в печени. Мышцы не выделяют ту глюкозу, которая образовалась после распада гликогена, в кровь, они используют её только для своих собственных нужд.

3. Почки. В них обнаружено незначительное количество гликогена. Ещё меньшие количества были найдены в глиальных клетках и в лейкоцитах, то есть белых кровяных клетках.

Выбор редакции
В зависимости от вида штрафа, в 1С 8.3 применяется различный порядок отражения в учете. Рассмотрим наиболее распространённые ситуации. На...

1. Для начала необходимо отобрать початки кукурузы. Они должны быть одинакового размера и не очень крупные. Именно поэтому лучше отдать...

Скумбрия тушеная — общие принципы приготовления Тушеная скумбрия – простое в приготовлении, вкусное и очень полезное блюдо. Для него не...

Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
Древние символы обладают огромной мощью. Особенно, если их правильно использовать. Так, тому, кто хочет найти гармонию с самим собой,...
С наступлением поста многие из нас задаются вполне обоснованными вопросами. Например, таким: «Можно ли есть в пост морепродукты?» Здесь...
Карп – один из символов водной стихии. Кроме того, эта рыба во многих культурах наделяется особыми свойствами. К примеру, на востоке...
Две недели назад 36-летняя Анастасия Мыскина объявила о расставании с гражданским мужем, политиком и бизнесменом Сергеем Мамедовым....
Почти у всех людей, изучающих английский язык, возникают трудности при изучении грамматики. И речь идет не только о понимании правил...